Magic Graphs

Magic squares are among the more popular mathematical recreations. Over the last 50 years, many generalizations of “magic” ideas have been applied to graphs. Recently there has been a resurgence of interest in “magic labelings” due to a number of results that have applications to the problem of deco...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Marr, Alison M. (Συγγραφέας), Wallis, W.D (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Birkhäuser, 2013.
Έκδοση:2nd ed. 2013.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02798nam a22004935i 4500
001 978-0-8176-8391-7
003 DE-He213
005 20151204172903.0
007 cr nn 008mamaa
008 121116s2013 xxu| s |||| 0|eng d
020 |a 9780817683917  |9 978-0-8176-8391-7 
024 7 |a 10.1007/978-0-8176-8391-7  |2 doi 
040 |d GrThAP 
050 4 |a QA164-167.2 
072 7 |a PBV  |2 bicssc 
072 7 |a MAT036000  |2 bisacsh 
082 0 4 |a 511.6  |2 23 
100 1 |a Marr, Alison M.  |e author. 
245 1 0 |a Magic Graphs  |h [electronic resource] /  |c by Alison M. Marr, W.D. Wallis. 
250 |a 2nd ed. 2013. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Birkhäuser,  |c 2013. 
300 |a XVI, 188 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- List of Figures -- Preliminaries -- Edge-Magic Total Labelings -- Vertex-Magic Total Labelings -- Totally Magic Labelings -- Magic Type Labeling of Digraphs -- Notes on the Research Problems -- References -- Bibliography -- Answers to Selected Exercises -- Index. 
520 |a Magic squares are among the more popular mathematical recreations. Over the last 50 years, many generalizations of “magic” ideas have been applied to graphs. Recently there has been a resurgence of interest in “magic labelings” due to a number of results that have applications to the problem of decomposing graphs into trees. Key features of this second edition include: ·         a new chapter on magic labeling of directed graphs ·         applications of theorems from graph theory and interesting counting arguments ·         new research problems and exercises covering a range of difficulties ·         a fully updated bibliography and index This concise, self-contained exposition is unique in its focus on the theory of magic graphs/labelings. It may serve as a graduate or advanced undergraduate text for courses in mathematics or computer science, and as reference for the researcher. 
650 0 |a Mathematics. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Combinatorics. 
650 1 4 |a Mathematics. 
650 2 4 |a Combinatorics. 
650 2 4 |a Discrete Mathematics in Computer Science. 
650 2 4 |a Applications of Mathematics. 
700 1 |a Wallis, W.D.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817683900 
856 4 0 |u http://dx.doi.org/10.1007/978-0-8176-8391-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)