Thinking in Problems How Mathematicians Find Creative Solutions /

This concise, self-contained textbook gives an in-depth look at problem-solving from a mathematician’s point-of-view. Each chapter builds off the previous one, while introducing a variety of methods that could be used when approaching any given problem. Creative thinking is the key to solving mathem...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Roytvarf, Alexander A. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston : Birkhäuser Boston : Imprint: Birkhäuser, 2013.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03429nam a22004695i 4500
001 978-0-8176-8406-8
003 DE-He213
005 20151204172904.0
007 cr nn 008mamaa
008 130107s2013 xxu| s |||| 0|eng d
020 |a 9780817684068  |9 978-0-8176-8406-8 
024 7 |a 10.1007/978-0-8176-8406-8  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
082 0 4 |a 512  |2 23 
100 1 |a Roytvarf, Alexander A.  |e author. 
245 1 0 |a Thinking in Problems  |h [electronic resource] :  |b How Mathematicians Find Creative Solutions /  |c by Alexander A. Roytvarf. 
264 1 |a Boston :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2013. 
300 |a XXXVII, 405 p. 14 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- Using the Stars on Problems -- Understanding the Advanced Skill Requirements -- Acknowledgements -- Jacobi Identities and Related Combinatorial Formulas -- A Property of Recursive Sequences -- A Combinatorial Algorithm in Multiexponential Analysis -- A Frequently Encountered Determinant.- A Dynamical System with a Strange Attractor -- Polar and Singular Value Decomposition Theorems -- 2x2 Matrices Which Are Roots of Unity -- A Property of Orthogonal Matrices -- Convexity and Related Classical Inequalities -- One-Parameter Groups of Linear Transformations.- Some Problems in Combinatorics and Analysis that can be Explored using Generating Functions -- Least Squares and Chebyshev Systems -- References -- Index of Terms. 
520 |a This concise, self-contained textbook gives an in-depth look at problem-solving from a mathematician’s point-of-view. Each chapter builds off the previous one, while introducing a variety of methods that could be used when approaching any given problem. Creative thinking is the key to solving mathematical problems, and this book outlines the tools necessary to improve the reader’s technique. The text is divided into twelve chapters, each providing corresponding hints, explanations, and finalization of solutions for the problems in the given chapter. For the reader’s convenience, each exercise is marked with the required background level. This book implements a variety of strategies that can be used to solve mathematical problems in fields such as analysis, calculus, linear and multilinear algebra and combinatorics. It includes applications to mathematical physics, geometry, and other branches of mathematics. Also provided within the text are real-life problems in engineering and technology. Thinking in Problems is intended for advanced undergraduate and graduate students in the classroom or as a self-study guide. Prerequisites include linear algebra and analysis. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Combinatorics. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebra. 
650 2 4 |a Analysis. 
650 2 4 |a Combinatorics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817684051 
856 4 0 |u http://dx.doi.org/10.1007/978-0-8176-8406-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)