Holomorphic Function Theory in Several Variables An Introduction /

This book provides an introduction to complex analysis in several variables. The viewpoint of integral representation theory together with Grauert's bumping method offers a natural extension of single variable techniques to several variables analysis and leads rapidly to important global result...

Full description

Bibliographic Details
Main Author: Laurent-Thiébaut, Christine (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: London : Springer London, 2011.
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 02927nam a22004095i 4500
001 978-0-85729-030-4
003 DE-He213
005 20151125022207.0
007 cr nn 008mamaa
008 100917s2011 xxk| s |||| 0|eng d
020 |a 9780857290304  |9 978-0-85729-030-4 
024 7 |a 10.1007/978-0-85729-030-4  |2 doi 
040 |d GrThAP 
050 4 |a QA331.7 
072 7 |a PBKD  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.94  |2 23 
100 1 |a Laurent-Thiébaut, Christine.  |e author. 
245 1 0 |a Holomorphic Function Theory in Several Variables  |h [electronic resource] :  |b An Introduction /  |c by Christine Laurent-Thiébaut. 
264 1 |a London :  |b Springer London,  |c 2011. 
300 |a XIII, 252 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Elementary local properties of holomorphic functions of several complex variables -- Currents and complex structures -- The Bochner-Martinelli-Koppelman kernel and formula applications -- Extensions of CR functions -- Extensions of holomorphic and CR functions on manifolds -- Domains of holomorphy and pseudoconvexity -- The Levi problem and the resolution of  in strictly pseudoconvex domains -- Characterisation of removable singularities of CR functions on a strictly pseudoconvex boundary -- Appendices. 
520 |a This book provides an introduction to complex analysis in several variables. The viewpoint of integral representation theory together with Grauert's bumping method offers a natural extension of single variable techniques to several variables analysis and leads rapidly to important global results. Applications focus on global extension problems for CR functions, such as the Hartogs-Bochner phenomenon and removable singularities for CR functions. Three appendices on differential manifolds, sheaf theory and functional analysis make the book self-contained. Each chapter begins with a detailed abstract, clearly demonstrating the structure and relations of following chapters. New concepts are clearly defined and theorems and propositions are proved in detail. Historical notes are also provided at the end of each chapter. Clear and succinct, this book will appeal to post-graduate students, young researchers seeking an introduction to holomorphic function theory in several variables and lecturers seeking a concise book on the subject. 
650 0 |a Mathematics. 
650 0 |a Functions of complex variables. 
650 1 4 |a Mathematics. 
650 2 4 |a Several Complex Variables and Analytic Spaces. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780857290298 
856 4 0 |u http://dx.doi.org/10.1007/978-0-85729-030-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)