Stabilization of Navier–Stokes Flows

Stabilization of Navier–Stokes Flows presents recent notable progress in the mathematical theory of stabilization of Newtonian fluid flows. Finite-dimensional feedback controllers are used to stabilize exponentially the equilibrium solutions of Navier–Stokes equations, reducing or eliminating turbul...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Barbu, Viorel (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London : Imprint: Springer, 2011.
Σειρά:Communications and Control Engineering,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03408nam a22005295i 4500
001 978-0-85729-043-4
003 DE-He213
005 20151125212425.0
007 cr nn 008mamaa
008 101119s2011 xxk| s |||| 0|eng d
020 |a 9780857290434  |9 978-0-85729-043-4 
024 7 |a 10.1007/978-0-85729-043-4  |2 doi 
040 |d GrThAP 
050 4 |a TJ212-225 
072 7 |a TJFM  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
082 0 4 |a 629.8  |2 23 
100 1 |a Barbu, Viorel.  |e author. 
245 1 0 |a Stabilization of Navier–Stokes Flows  |h [electronic resource] /  |c by Viorel Barbu. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2011. 
300 |a XII, 276 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Communications and Control Engineering,  |x 0178-5354 
505 0 |a Preliminaries -- Stabilization of Abstract Parabolic Systems -- Stabilization of Navier–Stokes Flows -- Stabilization by Noise of Navier–Stokes Equations -- Robust Stabilization of the Navier–Stokes Equation via the H-infinity Control Theory. 
520 |a Stabilization of Navier–Stokes Flows presents recent notable progress in the mathematical theory of stabilization of Newtonian fluid flows. Finite-dimensional feedback controllers are used to stabilize exponentially the equilibrium solutions of Navier–Stokes equations, reducing or eliminating turbulence. Stochastic stabilization and robustness of stabilizable feedback are also discussed. The text treats the questions: • What is the structure of the stabilizing feedback controller? • How can it be designed using a minimal set of eigenfunctions of the Stokes–Oseen operator? The analysis developed here provides a rigorous pattern for the design of efficient stabilizable feedback controllers to meet the needs of practical problems and the conceptual controllers actually detailed will render the reader’s task of application easier still. Stabilization of Navier–Stokes Flows avoids the tedious and technical details often present in mathematical treatments of control and Navier–Stokes equations and will appeal to a sizeable audience of researchers and graduate students interested in the mathematics of flow and turbulence control and in Navier-Stokes equations in particular. The chief points of linear functional analysis, linear algebra, probability theory and general variational theory of elliptic, parabolic and Navier–Stokes equations are reviewed in an introductory chapter and at the end of chapters 3 and 4. 
650 0 |a Engineering. 
650 0 |a Partial differential equations. 
650 0 |a System theory. 
650 0 |a Fluids. 
650 0 |a Fluid mechanics. 
650 0 |a Control engineering. 
650 1 4 |a Engineering. 
650 2 4 |a Control. 
650 2 4 |a Systems Theory, Control. 
650 2 4 |a Fluid- and Aerodynamics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Engineering Fluid Dynamics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780857290427 
830 0 |a Communications and Control Engineering,  |x 0178-5354 
856 4 0 |u http://dx.doi.org/10.1007/978-0-85729-043-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)