Geodesic and Horocyclic Trajectories

During the past thirty years, strong relationships have interwoven the fields of dynamical systems, linear algebra and number theory. This rapport between different areas of mathematics has enabled the resolution of some important conjectures and has in fact given birth to new ones. This book sheds...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Dal’Bo, Françoise (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London, 2011.
Σειρά:Universitext
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03446nam a22005055i 4500
001 978-0-85729-073-1
003 DE-He213
005 20151125022135.0
007 cr nn 008mamaa
008 101112s2011 xxk| s |||| 0|eng d
020 |a 9780857290731  |9 978-0-85729-073-1 
024 7 |a 10.1007/978-0-85729-073-1  |2 doi 
040 |d GrThAP 
050 4 |a QA313 
072 7 |a PBWR  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.39  |2 23 
082 0 4 |a 515.48  |2 23 
100 1 |a Dal’Bo, Françoise.  |e author. 
245 1 0 |a Geodesic and Horocyclic Trajectories  |h [electronic resource] /  |c by Françoise Dal’Bo. 
264 1 |a London :  |b Springer London,  |c 2011. 
300 |a XII, 176 p. 110 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext 
505 0 |a Dynamics of Fuchsian groups -- Examples of Fuchsian Groups -- Topological dynamics of the geodesic flow -- Schottky groups -- Topological dynamics -- The Lorentzian point of view -- Trajectories and Diophantine approximations. 
520 |a During the past thirty years, strong relationships have interwoven the fields of dynamical systems, linear algebra and number theory. This rapport between different areas of mathematics has enabled the resolution of some important conjectures and has in fact given birth to new ones. This book sheds light on these relationships and their applications in an elementary setting, by showing that the study of curves on a surface can lead to orbits of a linear group or even to continued fraction expansions of real numbers. Geodesic and Horocyclic Trajectories presents an introduction to the topological dynamics of two classical flows associated with surfaces of curvature −1, namely the geodesic and horocycle flows. Written primarily with the idea of highlighting, in a relatively elementary framework, the existence of gateways between some mathematical fields, and the advantages of using them, historical aspects of this field are not addressed and most of the references are reserved until the end of each chapter in the Comments section. Topics within the text cover geometry, and examples, of Fuchsian groups; topological dynamics of the geodesic flow; Schottky groups; the Lorentzian point of view and Trajectories and Diophantine approximations. This book will appeal to those with a basic knowledge of differential geometry including graduate students and experts with a general interest in the area Françoise Dal’Bo is a professor of mathematics at the University of Rennes. Her research studies topological and metric dynamical systems in negative curvature and their applications especially to the areas of number theory and linear actions. 
650 0 |a Mathematics. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Differential geometry. 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Number Theory. 
650 2 4 |a Differential Geometry. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780857290724 
830 0 |a Universitext 
856 4 0 |u http://dx.doi.org/10.1007/978-0-85729-073-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)