Monomial Ideals

This book demonstrates current trends in research on combinatorial and computational commutative algebra with a primary emphasis on topics related to monomial ideals. Providing a useful and quick introduction to areas of research spanning these fields, Monomial Ideals is split into three parts. Part...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Herzog, Jürgen (Συγγραφέας), Hibi, Takayuki (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London : Imprint: Springer, 2011.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03489nam a22004335i 4500
001 978-0-85729-106-6
003 DE-He213
005 20151204165718.0
007 cr nn 008mamaa
008 100929s2011 xxk| s |||| 0|eng d
020 |a 9780857291066  |9 978-0-85729-106-6 
024 7 |a 10.1007/978-0-85729-106-6  |2 doi 
040 |d GrThAP 
050 4 |a QA251.3 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.44  |2 23 
100 1 |a Herzog, Jürgen.  |e author. 
245 1 0 |a Monomial Ideals  |h [electronic resource] /  |c by Jürgen Herzog, Takayuki Hibi. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2011. 
300 |a XVI, 305 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Part I Gröbner bases: Monomial Ideals -- A short introduction to Gröbner bases -- Monomial orders and weights -- Generic initial ideals -- The exterior algebra -- Part II: Hilbert functions and resolutions -- Hilbert functions and the theorems of Macaulay and Kruskal-Katona -- Resolutions of monomial ideals and the Eliahou-Kervaire formula -- Alexander duality and resolutions -- Part III Combinatorics: Alexander duality and finite graphs -- Powers of monomial ideals -- Shifting theory -- Discrete Polymatroids -- Some homological algebra -- Geometry. 
520 |a This book demonstrates current trends in research on combinatorial and computational commutative algebra with a primary emphasis on topics related to monomial ideals. Providing a useful and quick introduction to areas of research spanning these fields, Monomial Ideals is split into three parts. Part I offers a quick introduction to the modern theory of Gröbner bases as well as the detailed study of generic initial ideals. Part II supplies Hilbert functions and resolutions and some of the combinatorics related to monomial ideals including the Kruskal—Katona theorem and algebraic aspects of Alexander duality. Part III discusses combinatorial applications of monomial ideals, providing a valuable overview of some of the central trends in algebraic combinatorics. Main subjects include edge ideals of finite graphs, powers of ideals, algebraic shifting theory and an introduction to discrete polymatroids. Theory is complemented by a number of examples and exercises throughout, bringing the reader to a deeper understanding of concepts explored within the text. Self-contained and concise, this book will appeal to a wide range of readers, including PhD students on advanced courses, experienced researchers, and combinatorialists and non-specialists with a basic knowledge of commutative algebra. Since their first meeting in 1985, Juergen Herzog (Universität Duisburg-Essen, Germany) and Takayuki Hibi (Osaka University, Japan), have worked together on a number of research projects, of which recent results are presented in this monograph. 
650 0 |a Mathematics. 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 1 4 |a Mathematics. 
650 2 4 |a Commutative Rings and Algebras. 
700 1 |a Hibi, Takayuki.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780857291059 
856 4 0 |u http://dx.doi.org/10.1007/978-0-85729-106-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)