Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems

An extension of different lectures given by the authors, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite Dimensional Dynamical Systems provides the reader with a comprehensive overview of these topics. Starting with the simplest bifurcation problems arising for ordinary differenti...

Full description

Bibliographic Details
Main Authors: Haragus, Mariana (Author), Iooss, Gérard (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: London : Springer London, 2011.
Series:Universitext
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 03270nam a22005775i 4500
001 978-0-85729-112-7
003 DE-He213
005 20151125021224.0
007 cr nn 008mamaa
008 101123s2011 xxk| s |||| 0|eng d
020 |a 9780857291127  |9 978-0-85729-112-7 
024 7 |a 10.1007/978-0-85729-112-7  |2 doi 
040 |d GrThAP 
050 4 |a QA313 
072 7 |a PBWR  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.39  |2 23 
082 0 4 |a 515.48  |2 23 
100 1 |a Haragus, Mariana.  |e author. 
245 1 0 |a Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems  |h [electronic resource] /  |c by Mariana Haragus, Gérard Iooss. 
264 1 |a London :  |b Springer London,  |c 2011. 
300 |a XI, 329 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext 
505 0 |a Elementary Bifurcations -- Center Manifolds -- Normal Forms -- Reversible Bifurcations -- Applications -- Appendix. 
520 |a An extension of different lectures given by the authors, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite Dimensional Dynamical Systems provides the reader with a comprehensive overview of these topics. Starting with the simplest bifurcation problems arising for ordinary differential equations in one- and two-dimensions, this book describes several tools from the theory of infinite dimensional dynamical systems, allowing the reader to treat more complicated bifurcation problems, such as bifurcations arising in partial differential equations. Attention is restricted to the study of local bifurcations with a focus upon the center manifold reduction and the normal form theory; two methods that have been widely used during the last decades. Through use of step-by-step examples and exercises, a number of possible applications are illustrated, and allow the less familiar reader to use this reduction method by checking some clear assumptions. Written by recognised experts in the field of center manifold and normal form theory this book provides a much-needed graduate level text on bifurcation theory, center manifolds and normal form theory. It will appeal to graduate students and researchers working in dynamical system theory. 
650 0 |a Mathematics. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Differential equations. 
650 0 |a Partial differential equations. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Statistical physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Ordinary Differential Equations. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Nonlinear Dynamics. 
700 1 |a Iooss, Gérard.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780857291110 
830 0 |a Universitext 
856 4 0 |u http://dx.doi.org/10.1007/978-0-85729-112-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)