A Short History of Mathematical Population Dynamics

<p>As Eugene Wigner stressed, mathematics has proven unreasonably effective in the physical sciences and their technological applications. The role of mathematics in the biological, medical and social sciences has been much more modest but has recently grown thanks to the simulation capacity o...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Bacaër, Nicolas (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London, 2011.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • The Fibonacci sequence (1202)
  • Halley’s life table (1693)
  • Euler and the geometric growth of populations (1748–1761)
  • Daniel Bernoulli, d’Alembert and the inoculation of smallpox (1760)
  • Malthus and the obstacles to geometric growth (1798)
  • Verhulst and the logistic equation (1838)
  • Bienaymé, Cournot and the extinction of family names (1845–1847)
  • Mendel and heredity (1865)
  • Galton, Watson and the extinction problem (1873–1875)
  • Lotka and stable population theory (1907–1911)
  • The Hardy–Weinberg law (1908)
  • Ross and malaria (1911)
  • Lotka, Volterra and the predator–prey system (1920–1926)
  • Fisher and natural selection (1922)
  • Yule and evolution (1924)
  • McKendrick and Kermack on epidemic modelling (1926–1927)
  • Haldane and mutations (1927)
  • Erlang and Steffensen on the extinction problem (1929–1933)
  • Wright and random genetic drift (1931)
  • The diffusion of genes (1937)
  • 21 The Leslie matrix (1945)
  • 22 Percolation and epidemics (1957)
  • 23 Game theory and evolution (1973)
  • 24 Chaotic populations (1974)
  • 25 China’s one-child policy (1980)
  • 26 Some contemporary problems.