Distributed Video Sensor Networks

Large-scale video networks are of increasing importance in a wide range of applications. However, the development of automated techniques for aggregating and interpreting information from multiple video streams in real-life scenarios is a challenging area of research. Collecting the work of leading...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Bhanu, Bir (Επιμελητής έκδοσης), Ravishankar, Chinya V. (Επιμελητής έκδοσης), Roy-Chowdhury, Amit K. (Επιμελητής έκδοσης), Aghajan, Hamid (Επιμελητής έκδοσης), Terzopoulos, Demetri (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London : Imprint: Springer, 2011.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 07107nam a22006015i 4500
001 978-0-85729-127-1
003 DE-He213
005 20151125231738.0
007 cr nn 008mamaa
008 110103s2011 xxk| s |||| 0|eng d
020 |a 9780857291271  |9 978-0-85729-127-1 
024 7 |a 10.1007/978-0-85729-127-1  |2 doi 
040 |d GrThAP 
050 4 |a TA1637-1638 
050 4 |a TA1634 
072 7 |a UYT  |2 bicssc 
072 7 |a UYQV  |2 bicssc 
072 7 |a COM012000  |2 bisacsh 
072 7 |a COM016000  |2 bisacsh 
082 0 4 |a 006.6  |2 23 
082 0 4 |a 006.37  |2 23 
245 1 0 |a Distributed Video Sensor Networks  |h [electronic resource] /  |c edited by Bir Bhanu, Chinya V. Ravishankar, Amit K. Roy-Chowdhury, Hamid Aghajan, Demetri Terzopoulos. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2011. 
300 |a XVII, 485 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Part I: Distributed Video Sensor Networks and Research Challenges -- Report on NSF/ARO/ONR Workshop on Distributed Camera Networks -- Part II: Video Processing and Understanding -- Motion Analysis: Past, Present and Future -- Projective Joint Invariants for Matching Curves in Camera Networks -- Multiple-view Object Recognition in Smart Camera Networks -- A Comparison of Techniques for Camera Selection and Handoff in a Video Network -- Tracking of Multiple Objects Over Camera Networks with Overlapping and Nonoverlapping Views -- Toward Robust Online Visual Tracking -- Modeling Patterns of Activity and Detecting Abnormal Events with Low-level Co-occurrences -- Use of Context in Video Processing -- Part III: Simulation, Graphics, Cognition and Video Networks -- Virtual Vision -- Virtualization and Programming Support for Video Sensor Networks with Application to Wireless and Physical Security -- Simulating Human Activities for Synthetic Inputs to Sensor Systems -- Cognitive Sensor Networks -- Ubiquitous Displays -- Part IV: Wireless Video Sensor Networks, Communications and Control -- Research Challenges for Wireless Multimedia Sensor Networks -- Camera Control and Georegistration for Video Sensor Networks -- Persistent Observation of Dynamic Scenes in an Active Camera Network -- Proactive PTZ Camera Control -- Distributed Consensus Algorithms for Image-based Localization in Camera Sensor Networks -- Conditional Posterior Cramér-rao Lower Bound and its Applications in Adaptive Sensor Management -- Part V: Distributed Embedded Cameras and Real-Time Video Analysis -- VideoWeb -- VideoWeb Dataset for Multicamera Activities and Nonverbal Communication -- Wide-Area Persistent Airborne Video -- Collaborative Face Recognition Using a Network of Embedded Cameras -- SATWARE -- Part VI: Distributed Video Networks – Applications -- Video Analytics For Force Protection -- Recognizing Activity Structures in Massive Numbers of Simple Events Over Large Areas -- Distributed Sensor Networks for Visual Surveillance -- Ascertaining Human Identity in Night Environments -- Part VII: Educational Opportunities and Curriculum Development -- Educational Opportunities in Video Sensor Networks. 
520 |a Large-scale video networks are of increasing importance in a wide range of applications. However, the development of automated techniques for aggregating and interpreting information from multiple video streams in real-life scenarios is a challenging area of research. Collecting the work of leading researchers from a broad range of disciplines, this timely text/reference offers an in-depth survey of the state of the art in distributed camera networks. The book addresses a broad spectrum of critical issues in this highly interdisciplinary field: current challenges and future directions; video processing and video understanding; simulation, graphics, cognition and video networks; wireless video sensor networks, communications and control; embedded cameras and real-time video analysis; applications of distributed video networks; and educational opportunities and curriculum-development. Topics and features: Presents an overview of research in areas of motion analysis, invariants, multiple cameras for detection, object tracking and recognition, and activities in video networks Provides real-world applications of distributed video networks, including force protection, wide area activities, port security, and recognition in night-time environments Describes the challenges in graphics and simulation, covering virtual vision, network security, human activities, cognitive architecture, and displays Examines issues of multimedia networks, registration, control of cameras (in simulations and real networks), localization and bounds on tracking Discusses system aspects of video networks, with chapters on providing testbed environments, data collection on activities, new integrated sensors for airborne sensors, face recognition, and building sentient spaces Investigates educational opportunities and curriculum development from the perspective of computer science and electrical engineering This unique text will be of great interest to researchers and graduate students of computer vision and pattern recognition, computer graphics and simulation, image processing and embedded systems, and communications, networks and controls. The large number of example applications will also appeal to application engineers. Dr. Bir Bhanu is Distinguished Professor of Electrical Engineering, and Director of the Center for Research in Intelligent Systems, at the University of California, Riverside (UCR), USA. Dr. Chinya V. Ravishankar is a Professor in the Department of Computer Science and Engineering, and Dr. Amit K. Roy-Chowdhury is an Associate Professor in the Department of Electrical Engineering, also both at UCR. Dr. Hamid Aghajan is a Professor of Electrical Engineering (Consulting) at Stanford University, USA. Dr. Demetri Terzopoulos is Chancellor's Professor of Computer Science at the University of California, Los Angeles, USA. 
650 0 |a Computer science. 
650 0 |a Computer communication systems. 
650 0 |a Artificial intelligence. 
650 0 |a Computer graphics. 
650 0 |a Image processing. 
650 0 |a Pattern recognition. 
650 1 4 |a Computer Science. 
650 2 4 |a Image Processing and Computer Vision. 
650 2 4 |a Pattern Recognition. 
650 2 4 |a Computer Graphics. 
650 2 4 |a Computer Communication Networks. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 |a Bhanu, Bir.  |e editor. 
700 1 |a Ravishankar, Chinya V.  |e editor. 
700 1 |a Roy-Chowdhury, Amit K.  |e editor. 
700 1 |a Aghajan, Hamid.  |e editor. 
700 1 |a Terzopoulos, Demetri.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780857291264 
856 4 0 |u http://dx.doi.org/10.1007/978-0-85729-127-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)