Representations of SL2(Fq)

Deligne-Lusztig theory aims to study representations of finite reductive groups by means of geometric methods, and particularly l-adic cohomology. Many excellent texts present, with different goals and perspectives, this theory in the general setting. This book focuses on the smallest non-trivial ex...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Bonnafé, Cédric (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London, 2011.
Σειρά:Algebra and Applications ; 13
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03594nam a22004815i 4500
001 978-0-85729-157-8
003 DE-He213
005 20151103122107.0
007 cr nn 008mamaa
008 101013s2011 xxk| s |||| 0|eng d
020 |a 9780857291578  |9 978-0-85729-157-8 
024 7 |a 10.1007/978-0-85729-157-8  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
082 0 4 |a 512  |2 23 
100 1 |a Bonnafé, Cédric.  |e author. 
245 1 0 |a Representations of SL2(Fq)  |h [electronic resource] /  |c by Cédric Bonnafé. 
264 1 |a London :  |b Springer London,  |c 2011. 
300 |a XXII, 186 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Algebra and Applications ;  |v 13 
505 0 |a Part I Preliminaries -- Structure of SL2(Fq) -- The Geometry of the Drinfeld Curve -- Part II Ordinary Characters -- Harish-Chandra Induction -- Deligne-Lusztig Induction -- The Character Table -- Part III Modular Representations -- More about Characters of G and of its Sylow Subgroups -- Unequal Characteristic: Generalities -- Unequal Characteristic: Equivalences of Categories -- Unequal Characteristic: Simple Modules, Decomposition Matrices -- Equal Characteristic -- Part IV Complements -- Special Cases -- Deligne-Lusztig Theory: an Overview -- Part V Appendices -- A l-Adic Cohomology -- B Block Theory -- C Review of Reflection Groups. 
520 |a Deligne-Lusztig theory aims to study representations of finite reductive groups by means of geometric methods, and particularly l-adic cohomology. Many excellent texts present, with different goals and perspectives, this theory in the general setting. This book focuses on the smallest non-trivial example, namely the group SL2(Fq), which not only provide the simplicity required for a complete description of the theory, but also the richness needed for illustrating the most delicate aspects. The development of Deligne-Lusztig theory was inspired by Drinfeld's example in 1974, and Representations of SL2(Fq) is based upon this example, and extends it to modular representation theory. To this end, the author makes use of fundamental results of l-adic cohomology. In order to efficiently use this machinery, a precise study of the geometric properties of the action of SL2(Fq) on the Drinfeld curve is conducted, with particular attention to the construction of quotients by various finite groups. At the end of the text, a succinct overview (without proof) of Deligne-Lusztig theory is given, as well as links to examples demonstrated in the text. With the provision of both a gentle introduction and several recent materials (for instance, Rouquier's theorem on derived equivalences of geometric nature), this book will be of use to graduate and postgraduate students, as well as researchers and lecturers with an interest in Deligne-Lusztig theory. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Algebraic geometry. 
650 0 |a Group theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebra. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Group Theory and Generalizations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780857291561 
830 0 |a Algebra and Applications ;  |v 13 
856 4 0 |u http://dx.doi.org/10.1007/978-0-85729-157-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)