Multivariable Analysis

This book provides a rigorous treatment of multivariable differential and integral calculus. Inverse and implicit function theorems based on total derivatives are given and the connection with solving systems of equations is included. There is an extensive treatment of extrema, including constrained...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Shirali, Satish (Συγγραφέας), Vasudeva, Harkrishan Lal (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London, 2011.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02797nam a22004335i 4500
001 978-0-85729-192-9
003 DE-He213
005 20151204165721.0
007 cr nn 008mamaa
008 101211s2011 xxk| s |||| 0|eng d
020 |a 9780857291929  |9 978-0-85729-192-9 
024 7 |a 10.1007/978-0-85729-192-9  |2 doi 
040 |d GrThAP 
050 4 |a QA331.5 
072 7 |a PBKB  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.8  |2 23 
100 1 |a Shirali, Satish.  |e author. 
245 1 0 |a Multivariable Analysis  |h [electronic resource] /  |c by Satish Shirali, Harkrishan Lal Vasudeva. 
264 1 |a London :  |b Springer London,  |c 2011. 
300 |a X, 394 p. 18 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preliminaries -- Functions between Euclidean Spaces -- Differentiation -- Inverse and Implicit Function Theorems -- Extrema -- Riemann Integration in Euclidean Space -- The General Stokes Theorem -- Solutions. 
520 |a This book provides a rigorous treatment of multivariable differential and integral calculus. Inverse and implicit function theorems based on total derivatives are given and the connection with solving systems of equations is included. There is an extensive treatment of extrema, including constrained extrema and Lagrange multipliers, covering both first order necessary conditions and second order sufficient conditions. The material on Riemann integration in n dimensions, being delicate by its very nature, is discussed in detail. Differential forms and the general Stokes' Theorem are explained in the last chapter. With a focus on clarity rather than brevity, this text gives clear motivation, definitions and examples with transparent proofs. Some of the material included is difficult to find in most texts, for example, double sequences in Chapter 2, Schwarz’ Theorem in Chapter 3 and sufficient conditions for constrained extrema in Chapter 5. A wide selection of problems, ranging from simple to challenging, is included with carefully written solutions. Ideal as a classroom text or a self study resource for students, this book will appeal to higher level undergraduates in Mathematics. 
650 0 |a Mathematics. 
650 0 |a Functions of real variables. 
650 1 4 |a Mathematics. 
650 2 4 |a Real Functions. 
700 1 |a Vasudeva, Harkrishan Lal.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780857291912 
856 4 0 |u http://dx.doi.org/10.1007/978-0-85729-192-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)