Core Concepts in Data Analysis: Summarization, Correlation and Visualization

Core Concepts in Data Analysis: Summarization, Correlation and Visualization provides in-depth descriptions of those data analysis approaches that either summarize data (principal component analysis and clustering, including hierarchical and network clustering) or correlate different aspects of data...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Mirkin, Boris (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London : Imprint: Springer, 2011.
Σειρά:Undergraduate Topics in Computer Science,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03488nam a22005295i 4500
001 978-0-85729-287-2
003 DE-He213
005 20170303021108.0
007 cr nn 008mamaa
008 110405s2011 xxk| s |||| 0|eng d
020 |a 9780857292872  |9 978-0-85729-287-2 
024 7 |a 10.1007/978-0-85729-287-2  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.M35 
072 7 |a PBD  |2 bicssc 
072 7 |a UYAM  |2 bicssc 
072 7 |a COM018000  |2 bisacsh 
072 7 |a MAT008000  |2 bisacsh 
082 0 4 |a 004.0151  |2 23 
100 1 |a Mirkin, Boris.  |e author. 
245 1 0 |a Core Concepts in Data Analysis: Summarization, Correlation and Visualization  |h [electronic resource] /  |c by Boris Mirkin. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2011. 
300 |a XX, 390 p. 129 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Undergraduate Topics in Computer Science,  |x 1863-7310 
520 |a Core Concepts in Data Analysis: Summarization, Correlation and Visualization provides in-depth descriptions of those data analysis approaches that either summarize data (principal component analysis and clustering, including hierarchical and network clustering) or correlate different aspects of data (decision trees, linear rules, neuron networks, and Bayes rule). Boris Mirkin takes an unconventional approach and introduces the concept of multivariate data summarization as a counterpart to conventional machine learning prediction schemes, utilizing techniques from statistics, data analysis, data mining, machine learning, computational intelligence, and information retrieval. Innovations following from his in-depth analysis of the models underlying summarization techniques are introduced, and applied to challenging issues such as the number of clusters, mixed scale data standardization, interpretation of the solutions, as well as relations between seemingly unrelated concepts: goodness-of-fit functions for classification trees and data standardization, spectral clustering and additive clustering, correlation and visualization of contingency data. The mathematical detail is encapsulated in the so-called “formulation” parts, whereas most material is delivered through “presentation” parts that explain the methods by applying them to small real-world data sets; concise “computation” parts inform of the algorithmic and coding issues. Four layers of active learning and self-study exercises are provided: worked examples, case studies, projects and questions. . 
650 0 |a Computer science. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Mathematical statistics. 
650 0 |a Artificial intelligence. 
650 0 |a Pattern recognition. 
650 1 4 |a Computer Science. 
650 2 4 |a Discrete Mathematics in Computer Science. 
650 2 4 |a Probability and Statistics in Computer Science. 
650 2 4 |a Math Applications in Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Pattern Recognition. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780857292865 
830 0 |a Undergraduate Topics in Computer Science,  |x 1863-7310 
856 4 0 |u http://dx.doi.org/10.1007/978-0-85729-287-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)