Demand-Driven Associative Classification

The ultimate goal of machines is to help humans to solve problems. Such problems range between two extremes: structured problems for which the solution is totally defined (and thus are easily programmed by humans), and random problems for which the solution is completely undefined (and thus cannot b...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Veloso, Adriano (Συγγραφέας), Meira Jr., Wagner (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London, 2011.
Σειρά:SpringerBriefs in Computer Science,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03063nam a22004815i 4500
001 978-0-85729-525-5
003 DE-He213
005 20151204140812.0
007 cr nn 008mamaa
008 110517s2011 xxk| s |||| 0|eng d
020 |a 9780857295255  |9 978-0-85729-525-5 
024 7 |a 10.1007/978-0-85729-525-5  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
082 0 4 |a 006.312  |2 23 
100 1 |a Veloso, Adriano.  |e author. 
245 1 0 |a Demand-Driven Associative Classification  |h [electronic resource] /  |c by Adriano Veloso, Wagner Meira Jr. 
264 1 |a London :  |b Springer London,  |c 2011. 
300 |a XIII, 112 p. 27 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computer Science,  |x 2191-5768 
505 0 |a Introduction and Preliminaries -- Introduction -- The Classification Problem -- Associative Classification -- Demand-Driven Associative Classification -- Extensions to Associative Classification -- Multi-Label Associative Classification -- Competence-Conscious Associative Classification -- Calibrated Associative Classification -- Self-Training Associative Classification -- Ordinal Regression and Ranking --  Conclusions and FutureWork. 
520 |a The ultimate goal of machines is to help humans to solve problems. Such problems range between two extremes: structured problems for which the solution is totally defined (and thus are easily programmed by humans), and random problems for which the solution is completely undefined (and thus cannot be programmed). Problems in the vast middle ground have solutions that cannot be well defined and are, thus, inherently hard to program. Machine Learning is the way to handle this vast middle ground, so that many tedious and difficult hand-coding tasks would be replaced by automatic learning methods. There are several machine learning tasks, and this work is focused on a major one, which is known as classification. Some classification problems are hard to solve, but we show that they can be decomposed into much simpler sub-problems. We also show that independently solving these sub-problems by taking into account their particular demands, often leads to improved classification performance. 
650 0 |a Computer science. 
650 0 |a Mathematical statistics. 
650 0 |a Data mining. 
650 1 4 |a Computer Science. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Probability and Statistics in Computer Science. 
700 1 |a Meira Jr., Wagner.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780857295248 
830 0 |a SpringerBriefs in Computer Science,  |x 2191-5768 
856 4 0 |u http://dx.doi.org/10.1007/978-0-85729-525-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)