Multispectral Satellite Image Understanding From Land Classification to Building and Road Detection /

Rapid development of remote sensing technology in recent years has greatly increased availability of high-resolution satellite image data.  However, detailed analysis of such large data sets also requires innovative new techniques in image and signal processing. This important text/reference present...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Ünsalan, Cem (Συγγραφέας), Boyer, Kim L. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London : Imprint: Springer, 2011.
Σειρά:Advances in Computer Vision and Pattern Recognition,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04530nam a22005175i 4500
001 978-0-85729-667-2
003 DE-He213
005 20151125222217.0
007 cr nn 008mamaa
008 130531s2011 xxk| s |||| 0|eng d
020 |a 9780857296672  |9 978-0-85729-667-2 
024 7 |a 10.1007/978-0-85729-667-2  |2 doi 
040 |d GrThAP 
050 4 |a TA1637-1638 
050 4 |a TA1634 
072 7 |a UYT  |2 bicssc 
072 7 |a UYQV  |2 bicssc 
072 7 |a COM012000  |2 bisacsh 
072 7 |a COM016000  |2 bisacsh 
082 0 4 |a 006.6  |2 23 
082 0 4 |a 006.37  |2 23 
100 1 |a Ünsalan, Cem.  |e author. 
245 1 0 |a Multispectral Satellite Image Understanding  |h [electronic resource] :  |b From Land Classification to Building and Road Detection /  |c by Cem Ünsalan, Kim L. Boyer. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2011. 
300 |a XVIII, 186 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6586 
505 0 |a Introduction -- Part I: Sensors -- Remote Sensing Satellites and Airborne Sensors -- Part II: The Multispectral Information -- Linearized Vegetation Indices -- Linearized Shadow and Water Indices -- Part III: Land Use Classification -- Review on Land Use Classification -- Land Use Classification using Structural Features -- Land Use Classification via Multispectral Information -- Graph Theoretical Measures for Land Development -- Part IV: Extracting Residential Regions -- Feature Based Grouping to Detect Suburbia -- Detecting Residential Regions by Graph Theoretical Measures -- Part V: Building and Road Detection -- Review on Building and Road Detection -- House and Street Network Detection in Residential Regions -- Part VI: Summarizing the Overall System -- Final Comments. 
520 |a Rapid development of remote sensing technology in recent years has greatly increased availability of high-resolution satellite image data.  However, detailed analysis of such large data sets also requires innovative new techniques in image and signal processing. This important text/reference presents a comprehensive review of image processing methods, for the analysis of land use in residential areas.  Combining a theoretical framework with highly practical applications, making use of both well-known methods and cutting-edge techniques in computer vision, the book describes a system for the effective detection of single houses and streets in very high resolution.  Topics and features: With a Foreword by Prof. Dr. Peter Reinartz of the German Aerospace Center Provides end-of-chapter summaries and review questions Presents a detailed review on remote sensing satellites Examines the multispectral information that can be obtained from satellite images, with a focus on vegetation and shadow-water indices Investigates methods for land-use classification, introducing precise graph theoretical measures over panchromatic images Addresses the problem of detecting residential regions Describes a house and street network-detection subsystem Concludes with a summary of the key ideas covered in the book This pioneering work on automated satellite and aerial image-understanding systems will be of great interest to researchers in both remote sensing and computer vision, highlighting the benefit of interdisciplinary collaboration between the two communities.  Urban planners and policy makers will also find considerable value in the proposed system. Dr. Cem Ünsalan is an Associate Professor in the Department of Electrical and Electronics Engineering at Yeditepe University, Istanbul, Turkey.  Dr. Kim Boyer is Professor and Head of the Department of Electrical, Computer, and Systems Engineering at Rensselaer Polytechnic Institute, Troy, NY, USA. 
650 0 |a Computer science. 
650 0 |a Image processing. 
650 0 |a Pattern recognition. 
650 1 4 |a Computer Science. 
650 2 4 |a Image Processing and Computer Vision. 
650 2 4 |a Pattern Recognition. 
700 1 |a Boyer, Kim L.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780857296665 
830 0 |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6586 
856 4 0 |u http://dx.doi.org/10.1007/978-0-85729-667-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)