Affine Maps, Euclidean Motions and Quadrics

Affine geometry and quadrics are fascinating subjects alone, but they are also important applications of linear algebra. They give a first glimpse into the world of algebraic geometry yet they are equally relevant to a wide range of disciplines such as engineering. This text discusses and classifies...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Reventós Tarrida, Agustí (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London, 2011.
Σειρά:Springer Undergraduate Mathematics Series,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03226nam a22004455i 4500
001 978-0-85729-710-5
003 DE-He213
005 20130725211132.0
007 cr nn 008mamaa
008 110531s2011 xxk| s |||| 0|eng d
020 |a 9780857297105  |9 978-0-85729-710-5 
024 7 |a 10.1007/978-0-85729-710-5  |2 doi 
040 |d GrThAP 
050 4 |a QA1-939 
072 7 |a PB  |2 bicssc 
072 7 |a MAT000000  |2 bisacsh 
082 0 4 |a 510  |2 23 
100 1 |a Reventós Tarrida, Agustí.  |e author. 
245 1 0 |a Affine Maps, Euclidean Motions and Quadrics  |h [electronic resource] /  |c by Agustí Reventós Tarrida. 
264 1 |a London :  |b Springer London,  |c 2011. 
300 |a XVIII, 458p. 49 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Undergraduate Mathematics Series,  |x 1615-2085 
505 0 |a Affine Spaces -- Affinities -- Classification of Affinities -- Classification of Affinities in Arbitrary Dimension -- Euclidean Affine Spaces -- Euclidean motions -- Euclidean Motions of the Line, the Plane and of Space -- Affine Classification of Real Quadrics -- Orthogonal Classification of Quadrics -- Appendices. 
520 |a Affine geometry and quadrics are fascinating subjects alone, but they are also important applications of linear algebra. They give a first glimpse into the world of algebraic geometry yet they are equally relevant to a wide range of disciplines such as engineering. This text discusses and classifies affinities and Euclidean motions culminating in classification results for quadrics. A high level of detail and generality is a key feature unmatched by other books available. Such intricacy makes this a particularly accessible teaching resource as it requires no extra time in deconstructing the author’s reasoning. The provision of a large number of exercises with hints will help students to develop their problem solving skills and will also be a useful resource for lecturers when setting work for independent study. Affinities, Euclidean Motions and Quadrics takes rudimentary, and often taken-for-granted, knowledge and presents it in a new, comprehensive form. Standard and non-standard examples are demonstrated throughout and an appendix provides the reader with a summary of advanced linear algebra facts for quick reference to the text. All factors combined, this is a self-contained book ideal for self-study that is not only foundational but unique in its approach.’ This text will be of use to lecturers in linear algebra and its applications to geometry as well as advanced undergraduate and beginning graduate students. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematics, general. 
650 2 4 |a Algebra. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780857297099 
830 0 |a Springer Undergraduate Mathematics Series,  |x 1615-2085 
856 4 0 |u http://dx.doi.org/10.1007/978-0-85729-710-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)