Nonlinear Power Flow Control Design Utilizing Exergy, Entropy, Static and Dynamic Stability, and Lyapunov Analysis /

Nonlinear Powerflow Control Design presents an innovative control system design process motivated by renewable energy electric grid integration problems. The concepts developed result from the convergence of three research and development goals: • to create a unifying metric to compare the value of...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Robinett III, Rush D. (Συγγραφέας), Wilson, David G. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London, 2011.
Σειρά:Understanding Complex Systems,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05329nam a22006615i 4500
001 978-0-85729-823-2
003 DE-He213
005 20151030061513.0
007 cr nn 008mamaa
008 110810s2011 xxk| s |||| 0|eng d
020 |a 9780857298232  |9 978-0-85729-823-2 
024 7 |a 10.1007/978-0-85729-823-2  |2 doi 
040 |d GrThAP 
050 4 |a TJ807-830 
072 7 |a THX  |2 bicssc 
072 7 |a SCI024000  |2 bisacsh 
082 0 4 |a 621.042  |2 23 
100 1 |a Robinett III, Rush D.  |e author. 
245 1 0 |a Nonlinear Power Flow Control Design  |h [electronic resource] :  |b Utilizing Exergy, Entropy, Static and Dynamic Stability, and Lyapunov Analysis /  |c by Rush D. Robinett III, David G. Wilson. 
264 1 |a London :  |b Springer London,  |c 2011. 
300 |a XXXIV, 346 p. 260 illus., 147 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Understanding Complex Systems,  |x 1860-0832 
505 0 |a Part I: Theory -- Introduction -- Thermodynamics -- Mechanics -- Stability -- Advanced Control Design -- Part II: Applications: Case Studies -- Case Study 1: Control Design Issues -- Case Study2: Collective Plume Tracing: A Minimal Information Approach to Collective Control -- Case Study 3: Nonlinear Aeroelasticity -- Case Study 4: Fundamental Power Engineering -- Case Study#5: Renewable Energy Microgrid Design -- Case Study 6: Robotic Manipulator Design and Control -- Case Study 7: Satellite Rendezvous and Docking Control -- Case Study 8: Other -- Part III: Advanced Topics -- Sustainability of Self-organizing Systems -- Analytical Model of a Person and Teams: Control System Approach. 
520 |a Nonlinear Powerflow Control Design presents an innovative control system design process motivated by renewable energy electric grid integration problems. The concepts developed result from the convergence of three research and development goals: • to create a unifying metric to compare the value of different energy sources – coal-burning power plant, wind turbines, solar photovoltaics, etc. – to be integrated into the electric power grid and to replace the typical metric of costs/profit; • to develop a new nonlinear control tool that applies power flow control, thermodynamics, and complex adaptive systems theory to the energy grid in a consistent way; and • to apply collective robotics theories to the creation of high-performance teams of people and key individuals in order to account for human factors in controlling and selling power into a distributed, decentralized electric power grid. All three of these goals have important concepts in common: exergy flow, limit cycles, and balance between competing power flows. In place of the typical zero-sum, stability vs. performance, linear controller design process, the authors propose a unique set of criteria to design controllers for a class of nonlinear systems with respect to both performance and stability, and seamlessly integrating information theoretic concepts. A combination of thermodynamics with Hamiltonian systems provides the theoretical foundation which is then realized in a series of connected case studies. It allows the process of control design to be viewed as a power flow control problem, balancing the power flowing into a system against that being dissipated within it and dependent on the power being stored in it – an interplay between kinetic and potential energies. Highlights of several of the case studies feature current renewable energy problems such as the future of electric power grid control, wind turbine load alleviation, and novel control designs for micro-grids that incorporate wind and sunlight as renewable energy sources. The sustainability of self-organizing systems are dealt with as advanced topics. Research scientists, practicing engineers, engineering students, and others with a background in engineering will be able to develop and apply this methodology to their particular problems. 
650 0 |a Engineering. 
650 0 |a Renewable energy resources. 
650 0 |a Complexity, Computational. 
650 0 |a Thermodynamics. 
650 0 |a Heat engineering. 
650 0 |a Heat transfer. 
650 0 |a Mass transfer. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Mechatronics. 
650 0 |a Electrical engineering. 
650 0 |a Power electronics. 
650 0 |a Renewable energy sources. 
650 0 |a Alternate energy sources. 
650 0 |a Green energy industries. 
650 1 4 |a Engineering. 
650 2 4 |a Renewable and Green Energy. 
650 2 4 |a Communications Engineering, Networks. 
650 2 4 |a Control, Robotics, Mechatronics. 
650 2 4 |a Engineering Thermodynamics, Heat and Mass Transfer. 
650 2 4 |a Power Electronics, Electrical Machines and Networks. 
650 2 4 |a Complexity. 
700 1 |a Wilson, David G.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780857298225 
830 0 |a Understanding Complex Systems,  |x 1860-0832 
856 4 0 |u http://dx.doi.org/10.1007/978-0-85729-823-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)