On Normalized Integral Table Algebras (Fusion Rings) Generated by a Faithful Non-real Element of Degree 3 /

The theory of table algebras was introduced in 1991 by Z. Arad and H.Blau in order to treat, in a uniform way, products of conjugacy classes and irreducible characters of finite groups.  Today, table algebra theory is a well-established branch of modern algebra with various applications, including ...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Arad, Zvi (Συγγραφέας), Bangteng, Xu (Συγγραφέας), Chen, Guiyun (Συγγραφέας), Cohen, Effi (Συγγραφέας), Haj Ihia Hussam, Arisha (Συγγραφέας), Muzychuk, Mikhail (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London : Imprint: Springer, 2011.
Σειρά:Algebra and Applications, 16
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03413nam a22006015i 4500
001 978-0-85729-850-8
003 DE-He213
005 20151125231922.0
007 cr nn 008mamaa
008 110718s2011 xxk| s |||| 0|eng d
020 |a 9780857298508  |9 978-0-85729-850-8 
024 7 |a 10.1007/978-0-85729-850-8  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
082 0 4 |a 512  |2 23 
100 1 |a Arad, Zvi.  |e author. 
245 1 0 |a On Normalized Integral Table Algebras (Fusion Rings)  |h [electronic resource] :  |b Generated by a Faithful Non-real Element of Degree 3 /  |c by Zvi Arad, Xu Bangteng, Guiyun Chen, Effi Cohen, Arisha Haj Ihia Hussam, Mikhail Muzychuk. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2011. 
300 |a X, 274 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Algebra and Applications,  |x 1572-5553 ;  |v 16 
505 0 |a Introduction -- Splitting the Main Problem into Four Sub-cases -- A Proof of a Non-existence Sub-case (2) -- Preliminary Classification of Sub-case (2) -- Finishing the Proofs of the Main Results. 
520 |a The theory of table algebras was introduced in 1991 by Z. Arad and H.Blau in order to treat, in a uniform way, products of conjugacy classes and irreducible characters of finite groups.  Today, table algebra theory is a well-established branch of modern algebra with various applications, including  the representation theory of finite groups, algebraic combinatorics and fusion rules algebras. This book presents the latest developments in this area.  Its main goal is to  give a classification of the Normalized Integral Table Algebras (Fusion Rings) generated by a faithful non-real element of degree 3. Divided into 4 parts, the first gives an outline of the classification approach, while remaining parts separately treat special cases that appear during classification. A particularly unique contribution to the field, can be found in part four, whereby a number of the algebras are linked to the polynomial irreducible representations of the group SL3(C). This book will be of interest to research mathematicians and PhD students working in table algebras, group representation theory, algebraic combinatorics and integral fusion rule algebras. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 0 |a Group theory. 
650 0 |a Combinatorics. 
650 0 |a Graph theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebra. 
650 2 4 |a Commutative Rings and Algebras. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Combinatorics. 
650 2 4 |a Graph Theory. 
700 1 |a Bangteng, Xu.  |e author. 
700 1 |a Chen, Guiyun.  |e author. 
700 1 |a Cohen, Effi.  |e author. 
700 1 |a Haj Ihia Hussam, Arisha.  |e author. 
700 1 |a Muzychuk, Mikhail.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780857298492 
830 0 |a Algebra and Applications,  |x 1572-5553 ;  |v 16 
856 4 0 |u http://dx.doi.org/10.1007/978-0-85729-850-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)