Steinberg Groups for Jordan Pairs

Steinberg groups, originating in the work of R. Steinberg on Chevalley groups in the nineteen sixties, are groups defined by generators and relations. The main examples are groups modelled on elementary matrices in the general linear, orthogonal and symplectic group. Jordan theory started with a fam...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Loos, Ottmar (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Neher, Erhard (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Birkhäuser, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Progress in Mathematics, 332
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04253nam a2200541 4500
001 978-1-0716-0264-5
003 DE-He213
005 20200110075503.0
007 cr nn 008mamaa
008 200110s2019 xxu| s |||| 0|eng d
020 |a 9781071602645  |9 978-1-0716-0264-5 
024 7 |a 10.1007/978-1-0716-0264-5  |2 doi 
040 |d GrThAP 
050 4 |a QA252-252.5 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512.48  |2 23 
100 1 |a Loos, Ottmar.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Steinberg Groups for Jordan Pairs  |h [electronic resource] /  |c by Ottmar Loos, Erhard Neher. 
250 |a 1st ed. 2019. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Birkhäuser,  |c 2019. 
300 |a XII, 458 p. 2 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics,  |x 0743-1643 ;  |v 332 
505 0 |a Preface -- Notation and Conventions -- Groups with Commutator Relations -- Groups Associated with Jordan Pairs -- Steinberg Groups for Peirce Graded Jordan Pairs -- Jordan Graphs -- Steinberg Groups for Root Graded Jordan Pairs -- Central Closedness -- Bibliography -- Subject Index -- Notation Index. 
520 |a Steinberg groups, originating in the work of R. Steinberg on Chevalley groups in the nineteen sixties, are groups defined by generators and relations. The main examples are groups modelled on elementary matrices in the general linear, orthogonal and symplectic group. Jordan theory started with a famous article in 1934 by physicists P. Jordan and E. Wigner, and mathematician J. v. Neumann with the aim of developing new foundations for quantum mechanics. Algebraists soon became interested in the new Jordan algebras and their generalizations: Jordan pairs and triple systems, with notable contributions by A. A. Albert, N. Jacobson and E. Zel'manov. The present monograph develops a unified theory of Steinberg groups, independent of matrix representations, based on the theory of Jordan pairs and the theory of 3-graded locally finite root systems. The development of this approach occurs over six chapters, progressing from groups with commutator relations and their Steinberg groups, then on to Jordan pairs, 3-graded locally finite root systems, and groups associated with Jordan pairs graded by root systems, before exploring the volume's main focus: the definition of the Steinberg group of a root graded Jordan pair by a small set of relations, and its central closedness. Several original concepts, such as the notions of Jordan graphs and Weyl elements, provide readers with the necessary tools from combinatorics and group theory. Steinberg Groups for Jordan Pairs is ideal for PhD students and researchers in the fields of elementary groups, Steinberg groups, Jordan algebras, and Jordan pairs. By adopting a unified approach, anybody interested in this area who seeks an alternative to case-by-case arguments and explicit matrix calculations will find this book essential. 
650 0 |a Nonassociative rings. 
650 0 |a Rings (Algebra). 
650 0 |a K-theory. 
650 0 |a Number theory. 
650 0 |a Group theory. 
650 1 4 |a Non-associative Rings and Algebras.  |0 http://scigraph.springernature.com/things/product-market-codes/M11116 
650 2 4 |a K-Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M11086 
650 2 4 |a Number Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M25001 
650 2 4 |a Group Theory and Generalizations.  |0 http://scigraph.springernature.com/things/product-market-codes/M11078 
700 1 |a Neher, Erhard.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781071602621 
776 0 8 |i Printed edition:  |z 9781071602638 
830 0 |a Progress in Mathematics,  |x 0743-1643 ;  |v 332 
856 4 0 |u https://doi.org/10.1007/978-1-0716-0264-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)