Steinberg Groups for Jordan Pairs
Steinberg groups, originating in the work of R. Steinberg on Chevalley groups in the nineteen sixties, are groups defined by generators and relations. The main examples are groups modelled on elementary matrices in the general linear, orthogonal and symplectic group. Jordan theory started with a fam...
Main Authors: | , |
---|---|
Corporate Author: | |
Format: | Electronic eBook |
Language: | English |
Published: |
New York, NY :
Springer New York : Imprint: Birkhäuser,
2019.
|
Edition: | 1st ed. 2019. |
Series: | Progress in Mathematics,
332 |
Subjects: | |
Online Access: | Full Text via HEAL-Link |
Table of Contents:
- Preface
- Notation and Conventions
- Groups with Commutator Relations
- Groups Associated with Jordan Pairs
- Steinberg Groups for Peirce Graded Jordan Pairs
- Jordan Graphs
- Steinberg Groups for Root Graded Jordan Pairs
- Central Closedness
- Bibliography
- Subject Index
- Notation Index.