Steinberg Groups for Jordan Pairs
Steinberg groups, originating in the work of R. Steinberg on Chevalley groups in the nineteen sixties, are groups defined by generators and relations. The main examples are groups modelled on elementary matrices in the general linear, orthogonal and symplectic group. Jordan theory started with a fam...
Κύριοι συγγραφείς: | , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
New York, NY :
Springer New York : Imprint: Birkhäuser,
2019.
|
Έκδοση: | 1st ed. 2019. |
Σειρά: | Progress in Mathematics,
332 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Preface
- Notation and Conventions
- Groups with Commutator Relations
- Groups Associated with Jordan Pairs
- Steinberg Groups for Peirce Graded Jordan Pairs
- Jordan Graphs
- Steinberg Groups for Root Graded Jordan Pairs
- Central Closedness
- Bibliography
- Subject Index
- Notation Index.