Artificial Intelligence in Financial Markets Cutting Edge Applications for Risk Management, Portfolio Optimization and Economics /

As technology advancement has increased, so to have computational applications for forecasting, modelling and trading financial markets and information, and practitioners are finding ever more complex solutions to financial challenges. Neural networking is a highly effective, trainable algorithmic a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Dunis, Christian L. (Επιμελητής έκδοσης), Middleton, Peter W. (Επιμελητής έκδοσης), Karathanasopolous, Andreas (Επιμελητής έκδοσης), Theofilatos, Konstantinos (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Palgrave Macmillan UK : Imprint: Palgrave Macmillan, 2016.
Σειρά:New Developments in Quantitative Trading and Investment
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05096nam a22006015i 4500
001 978-1-137-48880-0
003 DE-He213
005 20161122081948.0
007 cr nn 008mamaa
008 161122s2016 xxk| s |||| 0|eng d
020 |a 9781137488800  |9 978-1-137-48880-0 
024 7 |a 10.1057/978-1-137-48880-0  |2 doi 
040 |d GrThAP 
050 4 |a HG4001-HG4285 
072 7 |a KFFH  |2 bicssc 
072 7 |a BUS017000  |2 bisacsh 
082 0 4 |a 658.15  |2 23 
245 1 0 |a Artificial Intelligence in Financial Markets  |h [electronic resource] :  |b Cutting Edge Applications for Risk Management, Portfolio Optimization and Economics /  |c edited by Christian L. Dunis, Peter W. Middleton, Andreas Karathanasopolous, Konstantinos Theofilatos. 
264 1 |a London :  |b Palgrave Macmillan UK :  |b Imprint: Palgrave Macmillan,  |c 2016. 
300 |a XV, 344 p. 49 illus., 17 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a New Developments in Quantitative Trading and Investment 
505 0 |a 1. A Review of Applications of Artificial Intelligence in Financial Domain -- SECTION I: Financial Forecasting and Trading -- 2. Trading the FTSE100 Index – ‘Adaptive' Modelling and Optimisation Techniques -- 3. Modelling, Forecasting and Trading the Crack – A Sliding Window Approach to Training Neural Networks -- 4. GEPTrader: A new Standalone Tool for Constructing Trading Strategies with Gene Expression Programming -- SECTION II: ECONOMICS -- 5. Business Intelligence for Decision Making in Economics -- 6. An automated literature analysis on data mining applications to credit risk assessment -- SECTION III: CREDIT RISK ANALYSIS -- 7. Intelligent credit risk decision support: architecture and implementations -- 8. Artificial Intelligence for Islamic Sukuk Rating Predictions -- SECTION IV: PORTFOLIO MANAGEMENT, ANALYSIS AND OPTIMISATION -- 9. Portfolio selection as a multiperiod choice problem under uncertainty: an interation-based approach -- 10. Handling model risk in portfolio selection using a Multi-Objective Genetic Algorithm -- 11. Linear regression versus fuzzy linear regression — does it make a difference in the evaluation of the performance of mutual fund managers? 
520 |a As technology advancement has increased, so to have computational applications for forecasting, modelling and trading financial markets and information, and practitioners are finding ever more complex solutions to financial challenges. Neural networking is a highly effective, trainable algorithmic approach which emulates certain aspects of human brain functions, and is used extensively in financial forecasting allowing for quick investment decision making. This book presents the most cutting-edge artificial intelligence (AI)/neural networking applications for markets, assets and other areas of finance. Split into four sections, the book first explores time series analysis for forecasting and trading across a range of assets, including derivatives, exchange traded funds, debt and equity instruments. This section will focus on pattern recognition, market timing models, forecasting and trading of financial time series. Section II provides insights into macro and microeconomics and how AI techniques could be used to better understand and predict economic variables. Section III focuses on corporate finance and credit analysis providing an insight into corporate structures and credit, and establishing a relationship between financial statement analysis and the influence of various financial scenarios. Section IV focuses on portfolio management, exploring applications for portfolio theory, asset allocation and optimization. This book also provides some of the latest research in the field of artificial intelligence and finance, and provides in-depth analysis and highly applicable tools and techniques for practitioners and researchers in this field. . 
650 0 |a Finance. 
650 0 |a Corporations  |x Finance. 
650 0 |a Banks and banking. 
650 0 |a Investment banking. 
650 0 |a Securities. 
650 0 |a Risk management. 
650 0 |a Artificial intelligence. 
650 0 |a Economics, Mathematical. 
650 1 4 |a Finance. 
650 2 4 |a Corporate Finance. 
650 2 4 |a Investments and Securities. 
650 2 4 |a Banking. 
650 2 4 |a Risk Management. 
650 2 4 |a Quantitative Finance. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 |a Dunis, Christian L.  |e editor. 
700 1 |a Middleton, Peter W.  |e editor. 
700 1 |a Karathanasopolous, Andreas.  |e editor. 
700 1 |a Theofilatos, Konstantinos.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781137488794 
830 0 |a New Developments in Quantitative Trading and Investment 
856 4 0 |u http://dx.doi.org/10.1057/978-1-137-48880-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-ECF 
950 |a Economics and Finance (Springer-41170)