Supermanifolds and Supergroups Basic Theory /

Supermanifolds and Supergroups explains the basic ingredients of super manifolds and super Lie groups. It starts with super linear algebra and follows with a treatment of super smooth functions and the basic definition of a super manifold. When discussing the tangent bundle, integration of vector fi...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Tuynman, Gijs M. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Dordrecht : Springer Netherlands, 2005.
Σειρά:Mathematics and Its Applications ; 570
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02493nam a22005055i 4500
001 978-1-4020-2297-5
003 DE-He213
005 20151031001202.0
007 cr nn 008mamaa
008 100301s2005 ne | s |||| 0|eng d
020 |a 9781402022975  |9 978-1-4020-2297-5 
024 7 |a 10.1007/1-4020-2297-2  |2 doi 
040 |d GrThAP 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
082 0 4 |a 516.36  |2 23 
100 1 |a Tuynman, Gijs M.  |e author. 
245 1 0 |a Supermanifolds and Supergroups  |h [electronic resource] :  |b Basic Theory /  |c by Gijs M. Tuynman. 
264 1 |a Dordrecht :  |b Springer Netherlands,  |c 2005. 
300 |a XIV, 416 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Mathematics and Its Applications ;  |v 570 
505 0 |a $$ \mathfrak{A} $$ -graded commutative linear algebra -- Linear algebra of free graded A-modules -- Smooth functions and A-manifolds -- Bundles -- The tangent space -- A-Lie groups -- Connections. 
520 |a Supermanifolds and Supergroups explains the basic ingredients of super manifolds and super Lie groups. It starts with super linear algebra and follows with a treatment of super smooth functions and the basic definition of a super manifold. When discussing the tangent bundle, integration of vector fields is treated as well as the machinery of differential forms. For super Lie groups the standard results are shown, including the construction of a super Lie group for any super Lie algebra. The last chapter is entirely devoted to super connections. The book requires standard undergraduate knowledge on super differential geometry and super Lie groups. 
650 0 |a Mathematics. 
650 0 |a Nonassociative rings. 
650 0 |a Rings (Algebra). 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Differential geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Non-associative Rings and Algebras. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781402022968 
830 0 |a Mathematics and Its Applications ;  |v 570 
856 4 0 |u http://dx.doi.org/10.1007/1-4020-2297-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)