Darboux Transformations in Integrable Systems Theory and their Applications to Geometry /

The Darboux transformation approach is one of the most effective methods for constructing explicit solutions of partial differential equations which are called integrable systems and play important roles in mechanics, physics and differential geometry. This book presents the Darboux transformations...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Gu, Chaohao (Συγγραφέας), Hu, Hesheng (Συγγραφέας), Zhou, Zixiang (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Dordrecht : Springer Netherlands : Imprint: Springer, 2005.
Σειρά:Mathematical Physics Studies ; 26
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03287nam a22004815i 4500
001 978-1-4020-3088-8
003 DE-He213
005 20151030111426.0
007 cr nn 008mamaa
008 100301s2005 ne | s |||| 0|eng d
020 |a 9781402030888  |9 978-1-4020-3088-8 
024 7 |a 10.1007/1-4020-3088-6  |2 doi 
040 |d GrThAP 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.1  |2 23 
100 1 |a Gu, Chaohao.  |e author. 
245 1 0 |a Darboux Transformations in Integrable Systems  |h [electronic resource] :  |b Theory and their Applications to Geometry /  |c by Chaohao Gu, Hesheng Hu, Zixiang Zhou. 
264 1 |a Dordrecht :  |b Springer Netherlands :  |b Imprint: Springer,  |c 2005. 
300 |a X, 308 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Mathematical Physics Studies ;  |v 26 
505 0 |a 1+1 Dimensional Integrable Systems -- 2+1 Dimensional Integrable Systems -- N + 1 Dimensional Integrable Systems -- Surfaces of Constant Curvature, Bäcklund Congruences and Darboux Transformation -- Darboux Transformation and Harmonic Map -- Generalized Self-Dual Yang-Mills Equations and Yang-Mills-Higgs Equations -- Two Dimensional Toda Equations and Laplace Sequences of Surfaces in Projective Space. 
520 |a The Darboux transformation approach is one of the most effective methods for constructing explicit solutions of partial differential equations which are called integrable systems and play important roles in mechanics, physics and differential geometry. This book presents the Darboux transformations in matrix form and provides purely algebraic algorithms for constructing the explicit solutions. A basis for using symbolic computations to obtain the explicit exact solutions for many integrable systems is established. Moreover, the behavior of simple and multi-solutions, even in multi-dimensional cases, can be elucidated clearly. The method covers a series of important equations such as various kinds of AKNS systems in R1+n, harmonic maps from 2-dimensional manifolds, self-dual Yang-Mills fields and the generalizations to higher dimensional case, theory of line congruences in three dimensions or higher dimensional space etc. All these cases are explained in detail. This book contains many results that were obtained by the authors in the past few years. Audience: The book has been written for specialists, teachers and graduate students (or undergraduate students of higher grade) in mathematics and physics. 
650 0 |a Physics. 
650 0 |a Differential geometry. 
650 1 4 |a Physics. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Differential Geometry. 
700 1 |a Hu, Hesheng.  |e author. 
700 1 |a Zhou, Zixiang.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781402030871 
830 0 |a Mathematical Physics Studies ;  |v 26 
856 4 0 |u http://dx.doi.org/10.1007/1-4020-3088-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)