|
|
|
|
LEADER |
02910nam a22005055i 4500 |
001 |
978-1-4020-3222-6 |
003 |
DE-He213 |
005 |
20151121052510.0 |
007 |
cr nn 008mamaa |
008 |
100301s2005 ne | s |||| 0|eng d |
020 |
|
|
|a 9781402032226
|9 978-1-4020-3222-6
|
024 |
7 |
|
|a 10.1007/1-4020-3222-6
|2 doi
|
040 |
|
|
|d GrThAP
|
050 |
|
4 |
|a QA372
|
072 |
|
7 |
|a PBKJ
|2 bicssc
|
072 |
|
7 |
|a MAT007000
|2 bisacsh
|
082 |
0 |
4 |
|a 515.352
|2 23
|
245 |
1 |
0 |
|a Handbook of Topological Fixed Point Theory
|h [electronic resource] /
|c edited by R. F. Brown, M. Furi, L. Górniewicz, B. Jiang.
|
264 |
|
1 |
|a Dordrecht :
|b Springer Netherlands,
|c 2005.
|
300 |
|
|
|a X, 972 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
505 |
0 |
|
|a Homological Methods in Fixed Point Theory -- Coincidence Theory -- On the Lefschetz Fixed Point Theorem -- Linearizations for Maps of Nilmanifolds and Solvmanifolds -- Homotopy Minimal Periods -- Periodic Points and Braid Theory -- Fixed Point Theory of Multivalued Weighted Maps -- Fixed Point Theory for Homogeneous Spaces A Brief Survey -- Equivariant Fixed Point Theory -- A Note on Equivariant Fixed Point Theory -- Equivariant Degree -- Bifurcations of Solutions of SO(2)-Symmetric Nonlinear Problems with Variational Structure -- Nielsen Theory -- Nielsen Root Theory -- More about Nielsen Theories and Their Applications -- Algebraic Techniques for Calculating the Nielsen Number on Hyperbolic Surfaces -- Fibre Techniques in Nielsen Theory Calculations -- Wecken Theorem for Fixed and Periodic Points -- A Primer of Nielsen Fixed Point Theory -- Nielsen Fixed Point Theory on Surfaces -- Relative Nielsen Theory -- Applications -- Applicable Fixed Point Principles -- The Fixed Point Index of the Poincaré Translation Operator on Differentiable Manifolds -- On the Existence of Equilibria and Fixed Points of Maps under Constraints -- Topological Fixed Point Theory and Nonlinear Differential Equations -- Fixed Point Results Based on the Wa?ewski Method.
|
650 |
|
0 |
|a Mathematics.
|
650 |
|
0 |
|a Differential equations.
|
650 |
|
0 |
|a Partial differential equations.
|
650 |
|
0 |
|a Topology.
|
650 |
|
0 |
|a Algebraic topology.
|
650 |
1 |
4 |
|a Mathematics.
|
650 |
2 |
4 |
|a Ordinary Differential Equations.
|
650 |
2 |
4 |
|a Partial Differential Equations.
|
650 |
2 |
4 |
|a Topology.
|
650 |
2 |
4 |
|a Algebraic Topology.
|
700 |
1 |
|
|a Brown, R. F.
|e editor.
|
700 |
1 |
|
|a Furi, M.
|e editor.
|
700 |
1 |
|
|a Górniewicz, L.
|e editor.
|
700 |
1 |
|
|a Jiang, B.
|e editor.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9781402032219
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1007/1-4020-3222-6
|z Full Text via HEAL-Link
|
912 |
|
|
|a ZDB-2-SMA
|
950 |
|
|
|a Mathematics and Statistics (Springer-11649)
|