Zinc Oxide — A Material for Micro- and Optoelectronic Applications

Recently, a significant effort has been devoted to the investigation of ZnO as a suitable semiconductor for UV light-emitting diodes, lasers, and detectors and hetero-substrates for GaN. Research is driven not only by the technological requirements of state-of-the-art applications but also by the la...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Nickel, Norbert H. (Επιμελητής έκδοσης), Terukov, Evgenii (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Dordrecht : Springer Netherlands, 2005.
Σειρά:NATO Science Series II: Mathematics, Physics and Chemistry, 194
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04597nam a22005175i 4500
001 978-1-4020-3475-6
003 DE-He213
005 20151204152029.0
007 cr nn 008mamaa
008 100301s2005 ne | s |||| 0|eng d
020 |a 9781402034756  |9 978-1-4020-3475-6 
024 7 |a 10.1007/1-4020-3475-X  |2 doi 
040 |d GrThAP 
050 4 |a QC350-467 
050 4 |a TA1501-1820 
050 4 |a QC392-449.5 
050 4 |a TA1750-1750.22 
072 7 |a TTB  |2 bicssc 
072 7 |a PHJ  |2 bicssc 
072 7 |a TEC030000  |2 bisacsh 
082 0 4 |a 621.36  |2 23 
245 1 0 |a Zinc Oxide — A Material for Micro- and Optoelectronic Applications  |h [electronic resource] /  |c edited by Norbert H. Nickel, Evgenii Terukov. 
264 1 |a Dordrecht :  |b Springer Netherlands,  |c 2005. 
300 |a XVI, 240 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a NATO Science Series II: Mathematics, Physics and Chemistry,  |x 1568-2609 ;  |v 194 
505 0 |a ZnO Bulk and Layer Growth -- The Scope of Zinc Oxide Bulk Growth -- Growth Mechanism of ZnO Layers -- Kinetics of High-Temperature Defect Formation in ZnO in the Stream of Oxygen Radicals -- Electrical, Optical, and Structural Properties -- Electrical Properties of ZnO -- Electrical Properties of ZnO Thin Films and Single Crystals -- Structure, Morphology, and Photoluminescence of ZnO Films -- Optics and Spectroscopy of Point Defects in ZnO -- Whispering Gallery Modes in Hexagonal Zinc Oxide Micro- and Nanocrystals -- Properties of Dislocations in Epitaxial ZnO Layers Analyzed by Transmission Electron Microscopy -- Role of Hydrogen -- Muon Spin Rotation Measurements on Zinc Oxide -- Hydrogen Donors in Zinc Oxide -- Hydrogen-Related Defects in ZnO Studied by IR Absorption Spectroscopy -- Influence of the Hydrogen Concentration on H Bonding in Zinc Oxide -- Fundamental Properties -- Valence Band Ordering and Magneto-Optical Properties of Free and Bound Excitons in ZnO -- Fundamental Optical Spectra and Electronic Structure of ZnO Crystals -- Photo-Induced Localized Lattice Vibrations in ZnO Doped with 3d Transition Metal Impurities -- Device Applications -- ZnO Window Layers for Solar Cells -- ZnO/AlGaN Ultraviolet Light Emitting Diodes -- ZnO Transparent Thin-Film Transistor Device Physics -- Zinc Oxide Thin-Film Transistors. 
520 |a Recently, a significant effort has been devoted to the investigation of ZnO as a suitable semiconductor for UV light-emitting diodes, lasers, and detectors and hetero-substrates for GaN. Research is driven not only by the technological requirements of state-of-the-art applications but also by the lack of a fundamental understanding of growth processes, the role of intrinsic defects and dopants, and the properties of hydrogen. The NATO Advanced Research Workshop on “Zinc oxide as a material for micro- and optoelectronic applications”, held from June 23 to June 25 2004 in St. Petersburg, Russia, was organized accordingly and started with the growth of ZnO. A variety of growth methods for bulk and layer growth were discussed. These techniques comprised growth methods such as closed space vapor transport (CSVT), metal-organic chemical vapor deposition, reactive ion sputtering, and pulsed laser deposition. From a structural point of view using these growth techniques ZnO can be fabricated ranging from single crystalline bulk material to polycrystalline ZnO and nanowhiskers. A major aspect of the ZnO growth is doping. n-type doping is relatively easy to accomplish with elements such al Al or Ga. At room temperature single crystal ZnO exhibits a resistivity of about 0. 3 -cm, an electron mobility of 2 17 -3 225 cm /Vs, and a carrier concentration of 10 cm . In n-type ZnO two shallow donors are observable with activation energies of 30 – 40 meV and 60 – 70 meV. 
650 0 |a Physics. 
650 0 |a Optics. 
650 0 |a Optoelectronics. 
650 0 |a Plasmons (Physics). 
650 1 4 |a Physics. 
650 2 4 |a Optics, Optoelectronics, Plasmonics and Optical Devices. 
700 1 |a Nickel, Norbert H.  |e editor. 
700 1 |a Terukov, Evgenii.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781402034732 
830 0 |a NATO Science Series II: Mathematics, Physics and Chemistry,  |x 1568-2609 ;  |v 194 
856 4 0 |u http://dx.doi.org/10.1007/1-4020-3475-X  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)