Abiotic stress tolerance in plants

Stresses in plants caused by salt, drought, temperature, oxygen, and toxic compounds are the principal reason for reduction in crop yield. For example, high salinity in soils accounts for large decline in the yield of a wide variety of crops world over; ~1000 million ha of land is affected by soil s...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: RAI, ASHWANI K. (Επιμελητής έκδοσης), TAKABE, TERUHIRO (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Dordrecht : Springer Netherlands, 2006.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04774nam a22005415i 4500
001 978-1-4020-4389-5
003 DE-He213
005 20151204140743.0
007 cr nn 008mamaa
008 100301s2006 ne | s |||| 0|eng d
020 |a 9781402043895  |9 978-1-4020-4389-5 
024 7 |a 10.1007/1-4020-4389-9  |2 doi 
040 |d GrThAP 
050 4 |a QK1-989 
072 7 |a PST  |2 bicssc 
072 7 |a SCI011000  |2 bisacsh 
072 7 |a NAT026000  |2 bisacsh 
082 0 4 |a 580  |2 23 
245 1 0 |a Abiotic stress tolerance in plants  |h [electronic resource] /  |c edited by ASHWANI K. RAI, TERUHIRO TAKABE. 
264 1 |a Dordrecht :  |b Springer Netherlands,  |c 2006. 
300 |a X, 246 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a I - Signal transduction -- Stress Signal Transduction: components, pathways and network integration -- Identification of salt-responsive genes in monocotyledonous plants: from transcriptome to functional -- Phosphorylation of RNA polymerase II C-terminal domain and plant osmotic-stress responses -- II - Temperature stress -- Trienoic fatty acids and temperature tolerance of higher plants -- III - Oxidative stresses -- Nitric oxide research in agriculture: bridging the plant and bacterial realms -- Ultraviolet radiation stress: molecular and physiological adaptations in trees -- Involvement of aldehyde dehydrogenase in alleviation of post-anoxic injury in rice -- IV - Phytoremediation -- Genetic engineering stress tolerant plants for phytoremeditation -- V - Osmotic stresses -- Metabolic engineering of glycinebetaine -- Induction of biosynthesis of osmoprotectants in higher plants by hydrogen peroxide and its application to agriculture -- VI - Ion homeostasis -- Na+/H+ antiporters in plants and cyanobacteria -- Structural and functional relationship between cation transporters and channels -- VII - Nutrition -- Is cellulose synthesis enhanced by expression of sucrose sysnthesis in poplar -- Nitrogen metabolism in cyanobacteria under osmotic stress -- VIII - Structural responses -- Ultrastructural effects of salinity stress in higher plants -- IX - Development of Biotechnology -- Genetic diversity of saline coastal rice (Oryza Sativa L.) landraces of Bangladesh -- Development of marker-free and gene-exchange vectors, and its application -- Toward the development of biotechnology in Asia. 
520 |a Stresses in plants caused by salt, drought, temperature, oxygen, and toxic compounds are the principal reason for reduction in crop yield. For example, high salinity in soils accounts for large decline in the yield of a wide variety of crops world over; ~1000 million ha of land is affected by soil salinity. Increased sunlight leads to the generation of reactive oxygen species, which damage the plant cells. The threat of global environment change makes it increasingly demanding to generate crop plants that could withstand such harsh conditions. Much progress has been made in the identification and characterization of the mechanisms that allow plants to tolerate abiotic stresses. The understanding of metabolic fluxes and the main constraints responsible for the production of compatible solutes and the identification of many transporters, collectively open the possibility of genetic engineering in crop plants with the concomitant improved stress tolerance. Abiotic Stress Tolerance in Plants is a new book with focus on how plants adapt to abiotic stress and how genetic engineering could improve the global environment and food supply. Especially, the application of biotechnology in Asia and Africa would be important. Environmental stress impact is not only on current crop species, but is also the paramount barrier to the introduction of crop plants into areas not currently being used for agriculture. Stresses are likely to enhance the severity of problems to be faced by plants in the near future. 
650 0 |a Life sciences. 
650 0 |a Biotechnology. 
650 0 |a Food  |x Biotechnology. 
650 0 |a Agriculture. 
650 0 |a Plant science. 
650 0 |a Botany. 
650 0 |a Plant physiology. 
650 1 4 |a Life Sciences. 
650 2 4 |a Plant Sciences. 
650 2 4 |a Biotechnology. 
650 2 4 |a Food Science. 
650 2 4 |a Agriculture. 
650 2 4 |a Plant Physiology. 
700 1 |a RAI, ASHWANI K.  |e editor. 
700 1 |a TAKABE, TERUHIRO.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781402043888 
856 4 0 |u http://dx.doi.org/10.1007/1-4020-4389-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SBL 
950 |a Biomedical and Life Sciences (Springer-11642)