Topics in Geometry, Coding Theory and Cryptography

The theory of algebraic function fields over finite fields has its origins in number theory. However, after Goppa`s discovery of algebraic geometry codes around 1980, many applications of function fields were found in different areas of mathematics and information theory, such as coding theory, sphe...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Garcia, Arnaldo (Επιμελητής έκδοσης), Stichtenoth, Henning (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Dordrecht : Springer Netherlands, 2007.
Σειρά:Algebra and Applications ; 6
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02627nam a22005055i 4500
001 978-1-4020-5334-4
003 DE-He213
005 20151121051456.0
007 cr nn 008mamaa
008 100301s2007 ne | s |||| 0|eng d
020 |a 9781402053344  |9 978-1-4020-5334-4 
024 7 |a 10.1007/1-4020-5334-4  |2 doi 
040 |d GrThAP 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
082 0 4 |a 512.7  |2 23 
245 1 0 |a Topics in Geometry, Coding Theory and Cryptography  |h [electronic resource] /  |c edited by Arnaldo Garcia, Henning Stichtenoth. 
264 1 |a Dordrecht :  |b Springer Netherlands,  |c 2007. 
300 |a X, 201 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Algebra and Applications ;  |v 6 
520 |a The theory of algebraic function fields over finite fields has its origins in number theory. However, after Goppa`s discovery of algebraic geometry codes around 1980, many applications of function fields were found in different areas of mathematics and information theory, such as coding theory, sphere packings and lattices, sequence design, and cryptography. The use of function fields often led to better results than those of classical approaches. This book presents survey articles on some of these new developments. Most of the material is directly related to the interaction between function fields and their various applications; in particular the structure and the number of rational places of function fields are of great significance. The topics focus on material which has not yet been presented in other books or survey articles. Wherever applications are pointed out, a special effort has been made to present some background concerning their use. 
650 0 |a Mathematics. 
650 0 |a Data encryption (Computer science). 
650 0 |a Coding theory. 
650 0 |a Algebraic geometry. 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Number Theory. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Coding and Information Theory. 
650 2 4 |a Data Encryption. 
700 1 |a Garcia, Arnaldo.  |e editor. 
700 1 |a Stichtenoth, Henning.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781402053337 
830 0 |a Algebra and Applications ;  |v 6 
856 4 0 |u http://dx.doi.org/10.1007/1-4020-5334-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)