Factorization Method in Quantum Mechanics
This Work introduces the factorization method in quantum mechanics at an advanced level with an aim to put mathematical and physical concepts and techniques like the factorization method, Lie algebras, matrix elements and quantum control at the Reader’s disposal. For this purpose a comprehensive des...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Dordrecht :
Springer Netherlands,
2007.
|
Σειρά: | Fundamental Theories of Physics ;
150 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- METHOD
- THEORY
- LIE ALGEBRAS SU(2) AND SU(1, 1)
- APPLICATIONS IN NON-RELATIVISTIC QUANTUM MECHANICS
- HARMONIC OSCILLATOR
- INFINITELY DEEP SQUARE-WELL POTENTIAL
- MORSE POTENTIAL
- PÖSCHL-TELLER POTENTIAL
- PSEUDOHARMONIC OSCILLATOR
- ALGEBRAIC APPROACH TO AN ELECTRON IN A UNIFORM MAGNETIC FIELD
- RING-SHAPED NON-SPHERICAL OSCILLATOR
- GENERALIZED LAGUERRE FUNCTIONS
- NEW NONCENTRAL RING-SHAPED POTENTIAL
- PÖSCHL-TELLER LIKE POTENTIAL
- POSITION-DEPENDENT MASS SCHRÖDINGER EQUATION FOR A SINGULAR OSCILLATOR
- APPLICATIONS IN RELATIVISTIC QUANTUM MECHANICS
- SUSYQM AND SWKB APPROACH TO THE DIRAC EQUATION WITH A COULOMB POTENTIAL IN 2+1 DIMENSIONS
- REALIZATION OF DYNAMIC GROUP FOR THE DIRAC HYDROGEN-LIKE ATOM IN 2+1 DIMENSIONS
- ALGEBRAIC APPROACH TO KLEIN-GORDON EQUATION WITH THE HYDROGEN-LIKE ATOM IN 2+1 DIMENSIONS
- SUSYQM AND SWKB APPROACHES TO RELATIVISTIC DIRAC AND KLEIN-GORDON EQUATIONS WITH HYPERBOLIC POTENTIAL
- QUANTUM CONTROL
- CONTROLLABILITY OF QUANTUM SYSTEMS FOR THE MORSE AND PT POTENTIALS WITH DYNAMIC GROUP SU(2)
- CONTROLLABILITY OF QUANTUM SYSTEM FOR THE PT-LIKE POTENTIAL WITH DYNAMIC GROUP SU(1, 1)
- CONCLUSIONS AND OUTLOOKS
- CONCLUSIONS AND OUTLOOKS.