Modeling with Itô Stochastic Differential Equations

Dynamical systems with random influences occur throughout the physical, biological, and social sciences. By carefully studying a randomly varying system over a small time interval, a discrete stochastic process model can be constructed. Next, letting the time interval shrink to zero, an Ito stochast...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Allen, E. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Dordrecht : Springer Netherlands, 2007.
Σειρά:Mathematical Modelling: Theory and Applications, 22
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03367nam a22005775i 4500
001 978-1-4020-5953-7
003 DE-He213
005 20151204183840.0
007 cr nn 008mamaa
008 100301s2007 ne | s |||| 0|eng d
020 |a 9781402059537  |9 978-1-4020-5953-7 
024 7 |a 10.1007/978-1-4020-5953-7  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Allen, E.  |e author. 
245 1 0 |a Modeling with Itô Stochastic Differential Equations  |h [electronic resource] /  |c by E. Allen. 
264 1 |a Dordrecht :  |b Springer Netherlands,  |c 2007. 
300 |a XII, 230 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Mathematical Modelling: Theory and Applications,  |x 1386-2960 ;  |v 22 
505 0 |a Random Variables -- Stochastic Processes -- Stochastic Integration -- Stochastic Differential Equations -- Modeling. 
520 |a Dynamical systems with random influences occur throughout the physical, biological, and social sciences. By carefully studying a randomly varying system over a small time interval, a discrete stochastic process model can be constructed. Next, letting the time interval shrink to zero, an Ito stochastic differential equation model for the dynamical system is obtained. This modeling procedure is thoroughly explained and illustrated for randomly varying systems in population biology, chemistry, physics, engineering, and finance. Introductory chapters present the fundamental concepts of random variables, stochastic processes, stochastic integration, and stochastic differential equations. These concepts are explained in a Hilbert space setting which unifies and simplifies the presentation. Computer programs, given throughout the text, are useful in solving representative stochastic problems. Analytical and computational exercises are provided in each chapter that complement the material in the text. Modeling with Itô Stochastic Differential Equations is useful for researchers and graduate students. As a textbook for a graduate course, prerequisites include probability theory, differential equations, intermediate analysis, and some knowledge of scientific programming. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Computer mathematics. 
650 0 |a Mathematical models. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Analysis. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781402059520 
830 0 |a Mathematical Modelling: Theory and Applications,  |x 1386-2960 ;  |v 22 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4020-5953-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)