Stroh Formalism and Rayleigh Waves

The Stroh formalism is a powerful and elegant mathematical method developed for the analysis of the equations of anisotropic elasticity. The purpose of this exposition is to introduce the essence of this formalism and demonstrate its effectiveness in both static and dynamic elasticity. The expositio...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Tanuma, Kazumi (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Dordrecht : Springer Netherlands, 2007.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02759nam a22005175i 4500
001 978-1-4020-6389-3
003 DE-He213
005 20151204155746.0
007 cr nn 008mamaa
008 100301s2007 ne | s |||| 0|eng d
020 |a 9781402063893  |9 978-1-4020-6389-3 
024 7 |a 10.1007/978-1-4020-6389-3  |2 doi 
040 |d GrThAP 
050 4 |a TA329-348 
050 4 |a TA640-643 
072 7 |a TBJ  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 |a Tanuma, Kazumi.  |e author. 
245 1 0 |a Stroh Formalism and Rayleigh Waves  |h [electronic resource] /  |c by Kazumi Tanuma. 
264 1 |a Dordrecht :  |b Springer Netherlands,  |c 2007. 
300 |a IV, 159 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
520 |a The Stroh formalism is a powerful and elegant mathematical method developed for the analysis of the equations of anisotropic elasticity. The purpose of this exposition is to introduce the essence of this formalism and demonstrate its effectiveness in both static and dynamic elasticity. The exposition is divided into three chapters. Chapter 1 gives a succinct introduction to the Stroh formalism so that the reader can grasp the essentials as quickly as possible. In Chapter 2 several important topics in static elasticity, which include fundamental solutions, piezoelectricity, and inverse boundary value problems, are studied on the basis of the Stroh formalism. Chapter 3 is devoted to Rayleigh waves, which has long been a topic of the utmost importance in nondestructive evaluation, seismology, and materials science. Here existence, uniqueness, phase velocity, polarization, and perturbation of Rayleigh waves are discussed through the Stroh formalism. This work will appeal to students and researchers in applied mathematics, mechanics, and engineering science. Reprinted from the Journal of Elasticity, Vol. 89:1-3, 2007. . 
650 0 |a Engineering. 
650 0 |a Partial differential equations. 
650 0 |a Physics. 
650 0 |a Mechanics. 
650 0 |a Acoustics. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Engineering. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Mechanics. 
650 2 4 |a Acoustics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781402063886 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4020-6389-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)