Human Motion Understanding, Modelling, Capture, and Animation /

Edward Muybridge (1830–1904) is known as the pioneer in motion capt- ing with his famous experiments in 1887 called “Animal Locomotion”. Since then, the ?eld of animal or human motion analysis has grown in many dir- tions. However, research and results that involve human-like animation and the recov...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Rosenhahn, Bodo (Επιμελητής έκδοσης), Klette, Reinhard (Επιμελητής έκδοσης), Metaxas, Dimitris (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Dordrecht : Springer Netherlands, 2008.
Σειρά:Computational Imaging and Vision, 36
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05282nam a22005775i 4500
001 978-1-4020-6693-1
003 DE-He213
005 20151204182202.0
007 cr nn 008mamaa
008 100301s2008 ne | s |||| 0|eng d
020 |a 9781402066931  |9 978-1-4020-6693-1 
024 7 |a 10.1007/978-1-4020-6693-1  |2 doi 
040 |d GrThAP 
050 4 |a TA1637-1638 
050 4 |a TA1634 
072 7 |a UYT  |2 bicssc 
072 7 |a UYQV  |2 bicssc 
072 7 |a COM012000  |2 bisacsh 
072 7 |a COM016000  |2 bisacsh 
082 0 4 |a 006.6  |2 23 
082 0 4 |a 006.37  |2 23 
245 1 0 |a Human Motion  |h [electronic resource] :  |b Understanding, Modelling, Capture, and Animation /  |c edited by Bodo Rosenhahn, Reinhard Klette, Dimitris Metaxas. 
264 1 |a Dordrecht :  |b Springer Netherlands,  |c 2008. 
300 |a X, 636 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Computational Imaging and Vision,  |x 1381-6446 ;  |v 36 
505 0 |a 2D Tracking -- Understanding Human Motion: A Historic Review -- The Role of Manifold Learning in Human Motion Analysis -- Recognition of Action as a Bayesian Parameter Estimation Problem over Time -- The William Harvey Code: Mathematical Analysis of Optical Flow Computation for Cardiac Motion -- Detection and Tracking of Humans in Single View Sequences Using 2D Articulated Model -- Learning -- Combining Discrete and Continuous 3D Trackers -- Graphical Models for Human Motion Modelling -- 3D Human Motion Analysis in Monocular Video: Techniques and Challenges -- Spatially and Temporally Segmenting Movement to Recognize Actions -- Topologically Constrained Isometric Embedding -- 2D–3D Tracking -- Contours, Optic Flow, and Prior Knowledge: Cues for Capturing 3D Human Motion in Videos -- Tracking Clothed People -- An Introduction to Interacting Simulated Annealing -- Motion Capture for Interaction Environments -- Markerless Motion Capture for Biomechanical Applications -- Biomechanics and Applications -- Qualitative and Quantitative Aspects of Movement: The Discrepancy Between Clinical Gait Analysis and Activities of Daily Life -- Optimization of Human Motion Exemplified with Handbiking by Means of Motion Analysis and Musculoskeletal Models -- Imitation Learning and Transferring of Human Movement and Hand Grasping to Adapt to Environment Changes -- Accurate and Model-free Pose Estimation of Crash Test Dummies -- Modelling and Animation -- A Relational Approach to Content-based Analysis of Motion Capture Data -- The Representation of Rigid Body Motions in the Conformal Model of Geometric Algebra -- Video-based Capturing and Rendering of People -- Interacting Deformable Objects -- From Performance Theory to Character Animation Tools. 
520 |a Edward Muybridge (1830–1904) is known as the pioneer in motion capt- ing with his famous experiments in 1887 called “Animal Locomotion”. Since then, the ?eld of animal or human motion analysis has grown in many dir- tions. However, research and results that involve human-like animation and the recovery of motion is still far from being satisfactory. The modelling, tracking, and understanding of human motion based on video sequences as a research ?eld has increased in importance particularly in thelastdecadewiththeemergenceofapplicationsinsportssciences,medicine, biomechanics, animation (online games), surveillance, and security. Progress in human motion analysis depends on empirically anchored and grounded research in computer vision, computer graphics, and biomechanics. Though these ?elds of research are often treated separately, human motion analysis requires the integration of methodologies from computer vision and computer graphics.Furthermore,theunderstandinganduseofbiomechanicsconstraints improves the robustness of such an approach. This book is based on a June 2006 workshop held in Dagstuhl, Germany. This workshop brought together for the ?rst time researchers from the afo- mentioned disciplines. Based on their diverse perspectives, these researchers havebeendevelopingnewmethodologiesandcontributing,throughtheir?- ings, to the domain of human motion analysis. The interdisciplinary character of the workshop allowed people to present a wide range of approaches that helped stimulate intellectual discussions and the exchange of new ideas. 
650 0 |a Computer science. 
650 0 |a Human physiology. 
650 0 |a Sports medicine. 
650 0 |a Computer graphics. 
650 0 |a Image processing. 
650 1 4 |a Computer Science. 
650 2 4 |a Image Processing and Computer Vision. 
650 2 4 |a Computer Imaging, Vision, Pattern Recognition and Graphics. 
650 2 4 |a Human Physiology. 
650 2 4 |a Sports Medicine. 
700 1 |a Rosenhahn, Bodo.  |e editor. 
700 1 |a Klette, Reinhard.  |e editor. 
700 1 |a Metaxas, Dimitris.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781402066924 
830 0 |a Computational Imaging and Vision,  |x 1381-6446 ;  |v 36 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4020-6693-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)