From Hahn-Banach to Monotonicity

In this new edition of LNM 1693 the essential idea is to reduce questions on monotone multifunctions to questions on convex functions. However, rather than using a “big convexification” of the graph of the multifunction and the “minimax technique”for proving the existence of linear functionals satis...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Simons, Stephen (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Dordrecht : Springer Netherlands, 2008.
Σειρά:Lecture Notes in Mathematics, 1693
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03072nam a22004935i 4500
001 978-1-4020-6919-2
003 DE-He213
005 20151121052318.0
007 cr nn 008mamaa
008 100301s2008 ne | s |||| 0|eng d
020 |a 9781402069192  |9 978-1-4020-6919-2 
024 7 |a 10.1007/978-1-4020-6919-2  |2 doi 
040 |d GrThAP 
050 4 |a QA319-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.7  |2 23 
100 1 |a Simons, Stephen.  |e author. 
245 1 0 |a From Hahn-Banach to Monotonicity  |h [electronic resource] /  |c by Stephen Simons. 
264 1 |a Dordrecht :  |b Springer Netherlands,  |c 2008. 
300 |a XIV, 248 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1693 
505 0 |a The Hahn-Banach-Lagrange theorem and some consequences -- Fenchel duality -- Multifunctions, SSD spaces, monotonicity and Fitzpatrick functions -- Monotone multifunctions on general Banach spaces -- Monotone multifunctions on reflexive Banach spaces -- Special maximally monotone multifunctions -- The sum problem for general Banach spaces -- Open problems -- Glossary of classes of multifunctions -- A selection of results. 
520 |a In this new edition of LNM 1693 the essential idea is to reduce questions on monotone multifunctions to questions on convex functions. However, rather than using a “big convexification” of the graph of the multifunction and the “minimax technique”for proving the existence of linear functionals satisfying certain conditions, the Fitzpatrick function is used. The journey begins with a generalization of the Hahn-Banach theorem uniting classical functional analysis, minimax theory, Lagrange multiplier theory and convex analysis and culminates in a survey of current results on monotone multifunctions on a Banach space. The first two chapters are aimed at students interested in the development of the basic theorems of functional analysis, which leads painlessly to the theory of minimax theorems, convex Lagrange multiplier theory and convex analysis. The remaining five chapters are useful for those who wish to learn about the current research on monotone multifunctions on (possibly non reflexive) Banach space. 
650 0 |a Mathematics. 
650 0 |a Functional analysis. 
650 0 |a Operator theory. 
650 0 |a Calculus of variations. 
650 1 4 |a Mathematics. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Operator Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781402069185 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1693 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4020-6919-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)