Difference Algebra

Difference algebra grew out of the study of algebraic difference equations with coefficients from functional fields in much the same way as the classical algebraic geometry arose from the study of polynomial equations with numerical coefficients. The first stage of the development of the theory is a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Levin, Alexander (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Dordrecht : Springer Netherlands, 2008.
Σειρά:Algebra and Applications ; 8
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03513nam a22005295i 4500
001 978-1-4020-6947-5
003 DE-He213
005 20151204180518.0
007 cr nn 008mamaa
008 100301s2008 ne | s |||| 0|eng d
020 |a 9781402069475  |9 978-1-4020-6947-5 
024 7 |a 10.1007/978-1-4020-6947-5  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
082 0 4 |a 512  |2 23 
100 1 |a Levin, Alexander.  |e author. 
245 1 0 |a Difference Algebra  |h [electronic resource] /  |c by Alexander Levin. 
264 1 |a Dordrecht :  |b Springer Netherlands,  |c 2008. 
300 |a XI, 521 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Algebra and Applications ;  |v 8 
505 0 |a Preliminaries -- Basic Concepts of Difference Algebra -- Difference Modules -- Difference Field Extensions -- Compatibility, Replicability, and Monadicity -- Difference Kernels over Partial Difference Fields. Difference Valuation Rings -- Systems of Algebraic Difference Equations -- Elements of the Difference Galois Theory. 
520 |a Difference algebra grew out of the study of algebraic difference equations with coefficients from functional fields in much the same way as the classical algebraic geometry arose from the study of polynomial equations with numerical coefficients. The first stage of the development of the theory is associated with its founder J. F. Ritt (1893 - 1951) and R. Cohn whose book Difference Algebra (1965) remained the only fundamental monograph on the subject for many years. Nowadays, difference algebra has overgrew the frame of the theory of ordinary algebraic difference equations and appears as a rich theory with applications to the study of equations in finite differences, functional equations, differential equations with delay, algebraic structures with operators, group and semigroup rings. This book reflects the contemporary level of difference algebra; it contains a systematic study of partial difference algebraic structures and their applications, as well as the coverage of the classical theory of ordinary difference rings and field extensions. The monograph is intended for graduate students and researchers in difference and differential algebra, commutative algebra, ring theory, and algebraic geometry. It will be also of interest to researchers in computer algebra, theory of difference equations and equations of mathematical physics. The book is self-contained; it requires no prerequisites other than knowledge of basic algebraic concepts and mathematical maturity of an advanced undergraduate. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 0 |a Field theory (Physics). 
650 0 |a Difference equations. 
650 0 |a Functional equations. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebra. 
650 2 4 |a Field Theory and Polynomials. 
650 2 4 |a Commutative Rings and Algebras. 
650 2 4 |a Difference and Functional Equations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781402069468 
830 0 |a Algebra and Applications ;  |v 8 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4020-6947-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)