Duality System in Applied Mechanics and Optimal Control

A unified approach is proposed for applied mechanics and optimal control theory. The Hamilton system methodology in analytical mechanics is used for eigenvalue problems, vibration theory, gyroscopic systems, structural mechanics, wave-guide, LQ control, Kalman filter, robust control etc. All aspects...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Zhong, Wan-Xie (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2004.
Σειρά:Advances in Mechanics and Mathematics ; 5
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03259nam a22005655i 4500
001 978-1-4020-7881-1
003 DE-He213
005 20151030011052.0
007 cr nn 008mamaa
008 100301s2004 xxu| s |||| 0|eng d
020 |a 9781402078811  |9 978-1-4020-7881-1 
024 7 |a 10.1007/b130344  |2 doi 
040 |d GrThAP 
050 4 |a T57-57.97 
072 7 |a PBW  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 |a Zhong, Wan-Xie.  |e author. 
245 1 0 |a Duality System in Applied Mechanics and Optimal Control  |h [electronic resource] /  |c by Wan-Xie Zhong. 
264 1 |a Boston, MA :  |b Springer US,  |c 2004. 
300 |a XIII, 456 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Mechanics and Mathematics ;  |v 5 
505 0 |a to analytical dynamics -- Vibration Theory -- Probability and stochastic process -- Random vibration of structures -- Elastic system with single continuous coordinate -- Linear optimal control, theory and computation. 
520 |a A unified approach is proposed for applied mechanics and optimal control theory. The Hamilton system methodology in analytical mechanics is used for eigenvalue problems, vibration theory, gyroscopic systems, structural mechanics, wave-guide, LQ control, Kalman filter, robust control etc. All aspects are described in the same unified methodology. Numerical methods for all these problems are provided and given in meta-language, which can be implemented easily on the computer. Precise integration methods both for initial value problems and for two-point boundary value problems are proposed, which result in the numerical solutions of computer precision. Key Features of the text include: -Unified approach based on Hamilton duality system theory and symplectic mathematics. -Gyroscopic system vibration, eigenvalue problems. -Canonical transformation applied to non-linear systems. -Pseudo-excitation method for structural random vibrations. -Precise integration of two-point boundary value problems. -Wave propagation along wave-guides, scattering. -Precise solution of Riccati differential equations. -Kalman filtering. -HINFINITY theory of control and filter. 
650 0 |a Mathematics. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Calculus of variations. 
650 0 |a Vibration. 
650 0 |a Dynamical systems. 
650 0 |a Dynamics. 
650 0 |a Mechanical engineering. 
650 1 4 |a Mathematics. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Vibration, Dynamical Systems, Control. 
650 2 4 |a Mechanical Engineering. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781402078804 
830 0 |a Advances in Mechanics and Mathematics ;  |v 5 
856 4 0 |u http://dx.doi.org/10.1007/b130344  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)