|
|
|
|
LEADER |
03821nam a22005295i 4500 |
001 |
978-1-4020-8068-5 |
003 |
DE-He213 |
005 |
20151204171131.0 |
007 |
cr nn 008mamaa |
008 |
100301s2004 xxu| s |||| 0|eng d |
020 |
|
|
|a 9781402080685
|9 978-1-4020-8068-5
|
024 |
7 |
|
|a 10.1007/b116438
|2 doi
|
040 |
|
|
|d GrThAP
|
050 |
|
4 |
|a QA75.5-76.95
|
072 |
|
7 |
|a UY
|2 bicssc
|
072 |
|
7 |
|a UYA
|2 bicssc
|
072 |
|
7 |
|a COM014000
|2 bisacsh
|
072 |
|
7 |
|a COM031000
|2 bisacsh
|
082 |
0 |
4 |
|a 004.0151
|2 23
|
245 |
1 |
0 |
|a Nano, Quantum and Molecular Computing
|h [electronic resource] :
|b Implications to High Level Design and Validation /
|c edited by Sandeep K. Shukla, R. Iris Bahar.
|
264 |
|
1 |
|a Boston, MA :
|b Springer US,
|c 2004.
|
300 |
|
|
|a XVII, 358 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
505 |
0 |
|
|a Nanometer Scale Technologies: Device Considerations -- Nanocomputing in the Presence of Defects and Faults: A Survey -- Defect Tolerance at the End of the Roadmap -- Obtaining Quadrillion-Transistor Logic Systems Despite Imperfect Manufacture, Hardware Failure, and Incomplete System Specification -- A Probabilistic-Based Design for Nanoscale Computation -- Tools and Techniques for Evaluating Reliability Trade-Offs for Nano-Architectures -- Law of Large Numbers System Design -- Challenges in Reliable Quantum Computing -- Origins and Motivations for Design Rules in QCA -- Partitioning and Placement for Buildable QCA Circuits -- Verification of Large Scale Nano Systems with Unreliable Nano Devices.
|
520 |
|
|
|a One of the grand challenges in the nano-scopic computing era is guarantees of robustness. Robust computing system design is confronted with quantum physical, probabilistic, and even biological phenomena, and guaranteeing high reliability is much more difficult than ever before. Scaling devices down to the level of single electron operation will bring forth new challenges due to probabilistic effects and uncertainty in guaranteeing 'zero-one' based computing. Minuscule devices imply billions of devices on a single chip, which may help mitigate the challenge of uncertainty by replication and redundancy. However, such device densities will create a design and validation nightmare with the shear scale. The questions that confront computer engineers regarding the current status of nanocomputing material and the reliability of systems built from such miniscule devices, are difficult to articulate and answer. We have found a lack of resources in the confines of a single volume that at least partially attempts to answer these questions. We believe that this volume contains a large amount of research material as well as new ideas that will be very useful for some one starting research in the arena of nanocomputing, not at the device level, but the problems one would face at system level design and validation when nanoscopic physicality will be present at the device level.
|
650 |
|
0 |
|a Computer science.
|
650 |
|
0 |
|a Computers.
|
650 |
|
0 |
|a Computer-aided engineering.
|
650 |
|
0 |
|a Electrical engineering.
|
650 |
|
0 |
|a Electronic circuits.
|
650 |
1 |
4 |
|a Computer Science.
|
650 |
2 |
4 |
|a Theory of Computation.
|
650 |
2 |
4 |
|a Circuits and Systems.
|
650 |
2 |
4 |
|a Computer-Aided Engineering (CAD, CAE) and Design.
|
650 |
2 |
4 |
|a Electrical Engineering.
|
700 |
1 |
|
|a Shukla, Sandeep K.
|e editor.
|
700 |
1 |
|
|a Bahar, R. Iris.
|e editor.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9781402080678
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1007/b116438
|z Full Text via HEAL-Link
|
912 |
|
|
|a ZDB-2-SCS
|
912 |
|
|
|a ZDB-2-BAE
|
950 |
|
|
|a Computer Science (Springer-11645)
|