Optimization Theory

Optimization Theory is becoming a more and more important mathematical as well as interdisciplinary area, especially in the interplay between mathematics and many other sciences like computer science, physics, engineering, operations research, etc. This volume gives a comprehensive introduction into...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Jongen, Hubertus Th (Συγγραφέας), Meer, Klaus (Συγγραφέας), Triesch, Eberhard (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2004.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03492nam a22004935i 4500
001 978-1-4020-8099-9
003 DE-He213
005 20151204152944.0
007 cr nn 008mamaa
008 100301s2004 xxu| s |||| 0|eng d
020 |a 9781402080999  |9 978-1-4020-8099-9 
024 7 |a 10.1007/b130886  |2 doi 
040 |d GrThAP 
050 4 |a QA402.5-402.6 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519.6  |2 23 
100 1 |a Jongen, Hubertus Th.  |e author. 
245 1 0 |a Optimization Theory  |h [electronic resource] /  |c by Hubertus Th. Jongen, Klaus Meer, Eberhard Triesch. 
264 1 |a Boston, MA :  |b Springer US,  |c 2004. 
300 |a XI, 443 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Optimality Criteria on Simple Regions -- Constraints, Lagrange Function, Optimality Criteria -- Parametric Aspects, Semi-Infinite Optimization -- Convex Functions, Duality, Separation Theorem -- Linear Inequalities, Constraint Qualifications -- Linear Programming: The Simplex Method -- The Ellipsoid Method -- The Method of Karmarkar for Linear Programming -- Order of Convergence, Steepest Descent, (Lagrange -)Newton -- Conjugate Direction, Variable Metric -- Penalty-, Barrier-, Multiplier-, Interior Point-Methods -- Search Methods without Derivatives -- One-Dimensional Minimization -- Graphs and Networks -- Flows in Networks -- Applications of the Max-Flow Min-Cut Theorem -- Integer Linear Programming -- Computability; the Turing machine -- Complexity theory -- Reducibility and NP-completeness -- Some NP-completeness results -- The Random Access Machine -- Complexity Theory over the Real Numbers -- Approximating NP-hard Problems -- Approximation Algorithms for TSP -- Approximation algorithms for Bin Packing -- A FPTAS for Knapsack -- Miscellaneous. 
520 |a Optimization Theory is becoming a more and more important mathematical as well as interdisciplinary area, especially in the interplay between mathematics and many other sciences like computer science, physics, engineering, operations research, etc. This volume gives a comprehensive introduction into the theory of (deterministic) optimization on an advanced undergraduate and graduate level. One main feature is the treatment of both continuous and discrete optimization at the same place. This allows to study the problems under different points of view, supporting a better understanding of the entire field. Audience: The book can be adapted well as an introductory textbook into optimization theory on a basis of a two semester course; however, each of its parts can also be taught separately. Many exercises are included to increase the reader's understanding. 
650 0 |a Mathematics. 
650 0 |a Computers. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Mathematical optimization. 
650 1 4 |a Mathematics. 
650 2 4 |a Optimization. 
650 2 4 |a Discrete Mathematics in Computer Science. 
650 2 4 |a Theory of Computation. 
700 1 |a Meer, Klaus.  |e author. 
700 1 |a Triesch, Eberhard.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781402080982 
856 4 0 |u http://dx.doi.org/10.1007/b130886  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)