Elastic Multibody Dynamics A Direct Ritz Approach /

This textbook is an introduction to and exploration of a number of core topics in the field of applied mechanics: On the basis of Lagrange's Principle, a Central Equation of Dynamics is presented which yields a unified view on existing methods. From these, the Projection Equation is selected fo...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Bremer, H. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Dordrecht : Springer Netherlands, 2008.
Σειρά:Intelligent Systems, Control, And Automation: Science And Engineering ; 35
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03531nam a22005415i 4500
001 978-1-4020-8680-9
003 DE-He213
005 20151120180735.0
007 cr nn 008mamaa
008 100301s2008 ne | s |||| 0|eng d
020 |a 9781402086809  |9 978-1-4020-8680-9 
024 7 |a 10.1007/978-1-4020-8680-9  |2 doi 
040 |d GrThAP 
050 4 |a QC5.53 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.15  |2 23 
100 1 |a Bremer, H.  |e author. 
245 1 0 |a Elastic Multibody Dynamics  |h [electronic resource] :  |b A Direct Ritz Approach /  |c by H. Bremer. 
264 1 |a Dordrecht :  |b Springer Netherlands,  |c 2008. 
300 |a X, 452 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Intelligent Systems, Control, And Automation: Science And Engineering ;  |v 35 
505 0 |a Axioms and Principles -- Kinematics -- Rigid Multibody Systems -- Elastic Multibody Systems – The Partial Differential Equations -- Elastic Multibody Systems – The Subsystem Ordinary Differential Equations -- Elastic Multibody Systems – Ordinary Differential Equations -- A Short Excursion into Stability and Control. 
520 |a This textbook is an introduction to and exploration of a number of core topics in the field of applied mechanics: On the basis of Lagrange's Principle, a Central Equation of Dynamics is presented which yields a unified view on existing methods. From these, the Projection Equation is selected for the derivation of the motion equations of holonomic and of non-holonomic systems. The method is applied to rigid multibody systems where the rigid body is defined such that, by relaxation of the rigidity constraints, one can directly proceed to elastic bodies. A decomposition into subsystems leads to a minimal representation and to a recursive representation, respectively, of the equations of motion. Applied to elastic multibody systems one obtains, along with the use of spatial operators, a straight-on procedure for the interconnected partial and ordinary differential equations and the corresponding boundary conditions. The spatial operators are eventually applied to a RITZ series for approximation. The resulting equations then appear in the same structure as in rigid multibody systems. The main emphasis is laid on methodical as well as on (graduate level) educational aspects. The text is accompanied by a large number of examples and applications, e.g., from rotor dynamics and robotics. The mathematical prerequisites are subsumed in a short excursion into stability and control. 
650 0 |a Physics. 
650 0 |a Differential equations. 
650 0 |a Partial differential equations. 
650 0 |a Mechanics. 
650 0 |a Vibration. 
650 0 |a Dynamical systems. 
650 0 |a Dynamics. 
650 1 4 |a Physics. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Vibration, Dynamical Systems, Control. 
650 2 4 |a Mechanics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Ordinary Differential Equations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781402086793 
830 0 |a Intelligent Systems, Control, And Automation: Science And Engineering ;  |v 35 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4020-8680-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)