Topological Degree Approach to Bifurcation Problems

Topological bifurcation theory is one of the most essential topics in mathematics. This book contains original bifurcation results for the existence of oscillations and chaotic behaviour of differential equations and discrete dynamical systems under variation of involved parameters. Using topologica...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Fečkan, Michal (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Dordrecht : Springer Netherlands, 2008.
Σειρά:Topological Fixed Point Theory and Its Applications ; 5
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03224nam a22005655i 4500
001 978-1-4020-8724-0
003 DE-He213
005 20151204184247.0
007 cr nn 008mamaa
008 100301s2008 ne | s |||| 0|eng d
020 |a 9781402087240  |9 978-1-4020-8724-0 
024 7 |a 10.1007/978-1-4020-8724-0  |2 doi 
040 |d GrThAP 
050 4 |a QA611-614.97 
072 7 |a PBP  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 514  |2 23 
100 1 |a Fečkan, Michal.  |e author. 
245 1 0 |a Topological Degree Approach to Bifurcation Problems  |h [electronic resource] /  |c by Michal Fečkan. 
264 1 |a Dordrecht :  |b Springer Netherlands,  |c 2008. 
300 |a IX, 261 p. 17 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Topological Fixed Point Theory and Its Applications ;  |v 5 
505 0 |a Theoretical Background -- Bifurcation of Periodic Solutions -- Bifurcation of Chaotic Solutions -- Topological Transversality -- Traveling Waves on Lattices -- Periodic Oscillations of Wave Equations -- Topological Degree for Wave Equations. 
520 |a Topological bifurcation theory is one of the most essential topics in mathematics. This book contains original bifurcation results for the existence of oscillations and chaotic behaviour of differential equations and discrete dynamical systems under variation of involved parameters. Using topological degree theory and a perturbation approach in dynamical systems, a broad variety of nonlinear problems are studied, including: non-smooth mechanical systems with dry frictions; weakly coupled oscillators; systems with relay hysteresis; differential equations on infinite lattices of Frenkel-Kontorova and discretized Klein-Gordon types; blue sky catastrophes for reversible dynamical systems; buckling of beams; and discontinuous wave equations. Precise and complete proofs, together with concrete applications with many stimulating and illustrating examples, make this book valuable to both the applied sciences and mathematical fields, ensuring the book should not only be of interest to mathematicians but to physicists and theoretically inclined engineers interested in bifurcation theory and its applications to dynamical systems and nonlinear analysis. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Topology. 
650 0 |a Mechanics. 
650 0 |a Vibration. 
650 0 |a Dynamical systems. 
650 1 4 |a Mathematics. 
650 2 4 |a Topology. 
650 2 4 |a Analysis. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Mechanics. 
650 2 4 |a Vibration, Dynamical Systems, Control. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781402087233 
830 0 |a Topological Fixed Point Theory and Its Applications ;  |v 5 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4020-8724-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)