Logicism, Intuitionism, and Formalism What has Become of Them? /

The period in the foundations of mathematics that started in 1879 with the publication of Frege's Begriffsschrift and ended in 1931 with Gödel's Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I can reasonably be called the classical period. It saw the de...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Lindström, Sten (Επιμελητής έκδοσης), Palmgren, Erik (Επιμελητής έκδοσης), Segerberg, Krister (Επιμελητής έκδοσης), Stoltenberg-Hansen, Viggo (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Dordrecht : Springer Netherlands, 2009.
Σειρά:Synthese Library, Studies In Epistemology. Logic, Methodology, and Philosophy of Science ; 341
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04915nam a22006015i 4500
001 978-1-4020-8926-8
003 DE-He213
005 20151204142900.0
007 cr nn 008mamaa
008 100301s2009 ne | s |||| 0|eng d
020 |a 9781402089268  |9 978-1-4020-8926-8 
024 7 |a 10.1007/978-1-4020-8926-8  |2 doi 
040 |d GrThAP 
050 4 |a QA8.9-10.3 
072 7 |a PBC  |2 bicssc 
072 7 |a PBCD  |2 bicssc 
072 7 |a MAT018000  |2 bisacsh 
082 0 4 |a 511.3  |2 23 
245 1 0 |a Logicism, Intuitionism, and Formalism  |h [electronic resource] :  |b What has Become of Them? /  |c edited by Sten Lindström, Erik Palmgren, Krister Segerberg, Viggo Stoltenberg-Hansen. 
264 1 |a Dordrecht :  |b Springer Netherlands,  |c 2009. 
300 |a XII, 512 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Synthese Library, Studies In Epistemology. Logic, Methodology, and Philosophy of Science ;  |v 341 
505 0 |a Introduction: The Three Foundational Programmes -- Introduction: The Three Foundational Programmes -- Logicism and Neo-Logicism -- Protocol Sentences for Lite Logicism -- Frege’s Context Principle and Reference to Natural Numbers -- The Measure of Scottish Neo-Logicism -- Natural Logicism via the Logic of Orderly Pairing -- Intuitionism and Constructive Mathematics -- A Constructive Version of the Lusin Separation Theorem -- Dini’s Theorem in the Light of Reverse Mathematics -- Journey into Apartness Space -- Relativization of Real Numbers to a Universe -- 100 Years of Zermelo’s Axiom of Choice: What was the Problem with It? -- Intuitionism and the Anti-Justification of Bivalence -- From Intuitionistic to Point-Free Topology: On the Foundation of Homotopy Theory -- Program Extraction in Constructive Analysis -- Brouwer’s Approximate Fixed-Point Theorem is Equivalent to Brouwer’s Fan Theorem -- Formalism -- “Gödel’s Modernism: On Set-Theoretic Incompleteness,” Revisited -- Tarski’s Practice and Philosophy: Between Formalism and Pragmatism -- The Constructive Hilbert Program and the Limits of Martin-Löf Type Theory -- Categories, Structures, and the Frege-Hilbert Controversy: The Status of Meta-mathematics -- Beyond Hilbert’s Reach? -- Hilbert and the Problem of Clarifying the Infinite. 
520 |a The period in the foundations of mathematics that started in 1879 with the publication of Frege's Begriffsschrift and ended in 1931 with Gödel's Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I can reasonably be called the classical period. It saw the development of three major foundational programmes: the logicism of Frege, Russell and Whitehead, the intuitionism of Brouwer, and Hilbert's formalist and proof-theoretic programme. In this period, there were also lively exchanges between the various schools culminating in the famous Hilbert-Brouwer controversy in the 1920s. The purpose of this anthology is to review the programmes in the foundations of mathematics from the classical period and to assess their possible relevance for contemporary philosophy of mathematics. What can we say, in retrospect, about the various foundational programmes of the classical period and the disputes that took place between them? To what extent do the classical programmes of logicism, intuitionism and formalism represent options that are still alive today? These questions are addressed in this volume by leading mathematical logicians and philosophers of mathematics. The volume will be of interest primarily to researchers and graduate students of philosophy, logic, mathematics and theoretical computer science. The material will be accessible to specialists in these areas and to advanced graduate students in the respective fields. 
650 0 |a Mathematics. 
650 0 |a Epistemology. 
650 0 |a Logic. 
650 0 |a Ontology. 
650 0 |a Language and languages  |x Philosophy. 
650 0 |a History. 
650 0 |a Mathematical logic. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical Logic and Foundations. 
650 2 4 |a Logic. 
650 2 4 |a Philosophy of Language. 
650 2 4 |a Epistemology. 
650 2 4 |a Ontology. 
650 2 4 |a History of Mathematical Sciences. 
700 1 |a Lindström, Sten.  |e editor. 
700 1 |a Palmgren, Erik.  |e editor. 
700 1 |a Segerberg, Krister.  |e editor. 
700 1 |a Stoltenberg-Hansen, Viggo.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781402089251 
830 0 |a Synthese Library, Studies In Epistemology. Logic, Methodology, and Philosophy of Science ;  |v 341 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4020-8926-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)