Contextual Approach to Quantum Formalism

The aim of this book is to show that the probabilistic formalisms of classical statistical mechanics and quantum mechanics can be unified on the basis of a general contextual probabilistic model. By taking into account the dependence of (classical) probabilities on contexts (i.e. complexes of physic...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Khrennikov, Andrei (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Dordrecht : Springer Netherlands, 2009.
Σειρά:Fundamental Theories of Physics ; 160
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04533nam a22005775i 4500
001 978-1-4020-9593-1
003 DE-He213
005 20151204163005.0
007 cr nn 008mamaa
008 100301s2009 ne | s |||| 0|eng d
020 |a 9781402095931  |9 978-1-4020-9593-1 
024 7 |a 10.1007/978-1-4020-9593-1  |2 doi 
040 |d GrThAP 
050 4 |a QC173.96-174.52 
072 7 |a PHQ  |2 bicssc 
072 7 |a SCI057000  |2 bisacsh 
082 0 4 |a 530.12  |2 23 
100 1 |a Khrennikov, Andrei.  |e author. 
245 1 0 |a Contextual Approach to Quantum Formalism  |h [electronic resource] /  |c by Andrei Khrennikov. 
264 1 |a Dordrecht :  |b Springer Netherlands,  |c 2009. 
300 |a XXVIII, 354 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Fundamental Theories of Physics ;  |v 160 
505 0 |a Quantum and Classical Probability -- Quantum Mechanics: Postulates and Interpretations -- Classical Probability Theories -- Contextual Probability and Quantum-Like Models -- Contextual Probability and Interference -- Quantum-Like Representation of Contextual Probabilistic Model -- Ensemble Representation of Contextual Statistical Model -- Latent Quantum-Like Structure in the Kolmogorov Model -- Interference of Probabilities from Law of Large Numbers -- Bell’s Inequality -- Probabilistic Analysis of Bell’s Argument -- Bell’s Inequality for Conditional Probabilities -- Frequency Probabilistic Analysis of Bell-Type Considerations -- Original EPR-Experiment: Local Realistic Model -- Interrelation between Classical and Quantum Probabilities -- Discrete Time Dynamics -- Noncommutative Probability in Classical Disordered Systems -- Derivation of Schrödinger’s Equation in the Contextual Probabilistic Framework -- Hyperbolic Quantum Mechanics -- Representation of Contextual Statistical Model by Hyperbolic Amplitudes -- Hyperbolic Quantum Mechanics as Deformation of Conventional Classical Mechanics. 
520 |a The aim of this book is to show that the probabilistic formalisms of classical statistical mechanics and quantum mechanics can be unified on the basis of a general contextual probabilistic model. By taking into account the dependence of (classical) probabilities on contexts (i.e. complexes of physical conditions), one can reproduce all distinct features of quantum probabilities such as the interference of probabilities and the violation of Bell’s inequality. Moreover, by starting with a formula for the interference of probabilities (which generalizes the well known classical formula of total probability), one can construct the representation of contextual probabilities by complex probability amplitudes or, in the abstract formalism, by normalized vectors of the complex Hilbert space or its hyperbolic generalization. Thus the Hilbert space representation of probabilities can be naturally derived from classical probabilistic assumptions. An important chapter of the book critically reviews known no-go theorems: the impossibility to establish a finer description of micro-phenomena than provided by quantum mechanics; and, in particular, the commonly accepted consequences of Bell’s theorem (including quantum non-locality). Also, possible applications of the contextual probabilistic model and its quantum-like representation in complex Hilbert spaces in other fields (e.g. in cognitive science and psychology) are discussed. 
650 0 |a Physics. 
650 0 |a Probabilities. 
650 0 |a Quantum physics. 
650 0 |a Elementary particles (Physics). 
650 0 |a Quantum field theory. 
650 0 |a Quantum computers. 
650 0 |a Spintronics. 
650 0 |a Statistical physics. 
650 0 |a Dynamical systems. 
650 1 4 |a Physics. 
650 2 4 |a Quantum Physics. 
650 2 4 |a Elementary Particles, Quantum Field Theory. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Quantum Information Technology, Spintronics. 
650 2 4 |a Statistical Physics, Dynamical Systems and Complexity. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781402095924 
830 0 |a Fundamental Theories of Physics ;  |v 160 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4020-9593-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)