Trends in Computational Nanomechanics Transcending Length and Time Scales /

Situated at the intersection of Computational Chemistry, Solid State Physics, and Mechanical Engineering, Computational Nanomechanics has emerged as a new interdisciplinary research area that has already played a pivotal role in understanding the complex mechanical response of the nano-scale. Many i...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Dumitrica, Traian (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Dordrecht : Springer Netherlands, 2010.
Σειρά:Challenges and Advances in Computational Chemistry and Physics ; 9
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05402nam a22005415i 4500
001 978-1-4020-9785-0
003 DE-He213
005 20151204142039.0
007 cr nn 008mamaa
008 100715s2010 ne | s |||| 0|eng d
020 |a 9781402097850  |9 978-1-4020-9785-0 
024 7 |a 10.1007/978-1-4020-9785-0  |2 doi 
040 |d GrThAP 
050 4 |a T174.7 
072 7 |a TDPB  |2 bicssc 
072 7 |a TEC027000  |2 bisacsh 
082 0 4 |a 620.5  |2 23 
245 1 0 |a Trends in Computational Nanomechanics  |h [electronic resource] :  |b Transcending Length and Time Scales /  |c edited by Traian Dumitrica. 
264 1 |a Dordrecht :  |b Springer Netherlands,  |c 2010. 
300 |a XVIII, 620 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Challenges and Advances in Computational Chemistry and Physics ;  |v 9 
505 0 |a Hybrid Quantum/Classical Modeling of Material Systems: The “Learn on the Fly” Molecular Dynamics Scheme -- Multiscale Molecular Dynamics and the Reverse Mapping Problem -- Transition Path Sampling Studies of Solid-Solid Transformations in Nanocrystals under Pressure -- Nonequilibrium Molecular Dynamics and Multiscale Modeling of Heat Conduction in Solids -- A Multiscale Methodology to Approach Nanoscale Thermal Transport -- Multiscale Modeling of Contact-Induced Plasticity in Nanocrystalline Metals -- Silicon Nanowires: From Empirical to First Principles Modeling -- Multiscale Modeling of Surface Effects on the Mechanical Behavior and Properties of Nanowires -- Predicting the Atomic Configuration of 1- and 2-Dimensional Nanostructures via Global Optimization Methods -- Atomic-Scale Simulations of the Mechanical Behavior of Carbon Nanotube Systems -- Stick-Spiral Model for Studying Mechanical Properties of Carbon Nanotubes -- Potentials for van der Waals Interaction in Nano-Scale Computation -- Electrical Conduction in Carbon Nanotubes under Mechanical Deformations -- Multiscale Modeling of Carbon Nanotubes -- Quasicontinuum Simulations of Deformations of Carbon Nanotubes -- Electronic Properties and Reactivities of Perfect, Defected, and Doped Single-Walled Carbon Nanotubes -- Multiscale Modeling of Biological Protein Materials – Deformation and Failure -- Computational Molecular Biomechanics: A Hierarchical Multiscale Framework With Applications to Gating of Mechanosensitive Channels of Large Conductance -- Out of Many, One: Modeling Schemes for Biopolymer and Biofibril Networks. 
520 |a Situated at the intersection of Computational Chemistry, Solid State Physics, and Mechanical Engineering, Computational Nanomechanics has emerged as a new interdisciplinary research area that has already played a pivotal role in understanding the complex mechanical response of the nano-scale. Many important nanomechanical problems concern phenomena contained in the microscopic or the continuum phenomenological scale. Thus, they can be simulated with traditional computational approaches, such as molecular dynamics (for the microscopic scale) and finite elements (for the continuum scale). More recently, significant advances in computational methodologies have made it possible to go beyond the distinct approaches mentioned above. By seamlessly linking the previously separated discipline methodologies, multi-scale aspects of the behaviour of nano-materials can now be simulated and studied from both fundamental and engineering-application viewpoints. Trends in Computational Nanomechanics: Transcending Length and Time Scales reviews recent results generated via the application of individual or blended microscopic (from ab initio to tight binding to empirical force field) and continuum modeling techniques. It illustrates the significant progresses and challenges in developing multi-scale computational tools that aim to describe the nanomechanical response over multiple time scales and length scales ranging from the atomistic, through the microstructure or transitional, and up to the continuum, as well as the tremendous opportunities in using atomistic-to-continuum nanomechanical strategies in the bio-materials arena. Trends in Computational Nanomechanics: Transcending Length and Time Scales is a useful tool of reference for professionals, graduates, and undergraduates interested in Computational Chemistry and Physics, Materials Science, and Engineering. 
650 0 |a Engineering. 
650 0 |a Chemistry, Physical and theoretical. 
650 0 |a Computer mathematics. 
650 0 |a Physics. 
650 0 |a Condensed matter. 
650 0 |a Nanotechnology. 
650 1 4 |a Engineering. 
650 2 4 |a Nanotechnology and Microengineering. 
650 2 4 |a Theoretical and Computational Chemistry. 
650 2 4 |a Condensed Matter Physics. 
650 2 4 |a Nanotechnology. 
650 2 4 |a Numerical and Computational Physics. 
650 2 4 |a Computational Science and Engineering. 
700 1 |a Dumitrica, Traian.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781402097843 
830 0 |a Challenges and Advances in Computational Chemistry and Physics ;  |v 9 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4020-9785-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-CMS 
950 |a Chemistry and Materials Science (Springer-11644)