Machine Learning Projects for .NET Developers

Machine Learning Projects for .NET Developers shows you how to build smarter .NET applications that learn from data, using simple algorithms and techniques that can be applied to a wide range of real-world problems. You’ll code each project in the familiar setting of Visual Studio, while the machine...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Brandewinder, Mathias (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berkeley, CA : Apress : Imprint: Apress, 2015.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02943nam a22004095i 4500
001 978-1-4302-6766-9
003 DE-He213
005 20150716153618.0
007 cr nn 008mamaa
008 150709s2015 xxu| s |||| 0|eng d
020 |a 9781430267669  |9 978-1-4302-6766-9 
024 7 |a 10.1007/978-1-4302-6766-9  |2 doi 
040 |d GrThAP 
050 4 |a QA75.5-76.95 
072 7 |a UY  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
082 0 4 |a 004  |2 23 
100 1 |a Brandewinder, Mathias.  |e author. 
245 1 0 |a Machine Learning Projects for .NET Developers  |h [electronic resource] /  |c by Mathias Brandewinder. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2015. 
300 |a XIX, 300 p. 84 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
520 |a Machine Learning Projects for .NET Developers shows you how to build smarter .NET applications that learn from data, using simple algorithms and techniques that can be applied to a wide range of real-world problems. You’ll code each project in the familiar setting of Visual Studio, while the machine learning logic uses F#, a language ideally suited to machine learning applications in .NET. If you’re new to F#, this book will give you everything you need to get started. If you’re already familiar with F#, this is your chance to put the language into action in an exciting new context. In a series of fascinating projects, you’ll learn how to: Build an optical character recognition (OCR) system from scratch Code a spam filter that learns by example Use F#’s powerful type providers to interface with external resources (in this case, data analysis tools from the R programming language) Transform your data into informative features, and use them to make accurate predictions Find patterns in data when you don’t know what you’re looking for Predict numerical values using regression models Implement an intelligent game that learns how to play from experience Along the way, you’ll learn fundamental ideas that can be applied in all kinds of real-world contexts and industries, from advertising to finance, medicine, and scientific research. While some machine learning algorithms use fairly advanced mathematics, this book focuses on simple but effective approaches. If you enjoy hacking code and data, this book is for you. 
650 0 |a Computer science. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computer Science. 
650 2 4 |a Computer Science, general. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781430267676 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4302-6766-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-CWD 
950 |a Professional and Applied Computing (Springer-12059)