Generalized Linear Models With Examples in R

This textbook presents an introduction to multiple linear regression, providing real-world data sets and practice problems. A practical working knowledge of applied statistical practice is developed through the use of these data sets and numerous case studies. The authors include a set of practice p...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Dunn, Peter K. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Smyth, Gordon K. (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Springer Texts in Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04031nam a2200469 4500
001 978-1-4419-0118-7
003 DE-He213
005 20191025072012.0
007 cr nn 008mamaa
008 181110s2018 xxu| s |||| 0|eng d
020 |a 9781441901187  |9 978-1-4419-0118-7 
024 7 |a 10.1007/978-1-4419-0118-7  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Dunn, Peter K.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Generalized Linear Models With Examples in R  |h [electronic resource] /  |c by Peter K. Dunn, Gordon K. Smyth. 
250 |a 1st ed. 2018. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2018. 
300 |a XX, 562 p. 115 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Texts in Statistics,  |x 1431-875X 
505 0 |a Statistical models -- Linear regression models -- Linear regression models: diagnostics and model-building -- Beyond linear regression: the method of maximum likelihood -- Generalized linear models: structure -- Generalized linear models: estimation -- Generalized linear models: inference -- Generalized linear models: diagnostics -- Models for proportions: binomial GLMs -- Models for counts: Poisson and negative binomial GLMs -- Positive continuous data: gamma and inverse Gaussian GLMs -- Tweedie GLMs -- Extra problems -- Appendix A: Using R for data analysis -- Appendix B: The GLMsData package -- Index: Data sets -- Index: R commands -- Index: General Topics. . 
520 |a This textbook presents an introduction to multiple linear regression, providing real-world data sets and practice problems. A practical working knowledge of applied statistical practice is developed through the use of these data sets and numerous case studies. The authors include a set of practice problems both at the end of each chapter and at the end of the book. Each example in the text is cross-referenced with the relevant data set, so that readers can load the data and follow the analysis in their own R sessions. The balance between theory and practice is evident in the list of problems, which vary in difficulty and purpose. This book is designed with teaching and learning in mind, featuring chapter introductions and summaries, exercises, short answers, and simple, clear examples. Focusing on the connections between generalized linear models (GLMs) and linear regression, the book also references advanced topics and tools that have not typically been included in introductions to GLMs to date, such as Tweedie family distributions with power variance functions, saddlepoint approximations, likelihood score tests, modified profile likelihood, and randomized quantile residuals. In addition, the authors introduce the new R code package, GLMsData, created specifically for this book. Generalized Linear Models with Examples in R balances theory with practice, making it ideal for both introductory and graduate-level students who have a basic knowledge of matrix algebra, calculus, and statistics. . 
650 0 |a Statistics . 
650 1 4 |a Statistical Theory and Methods.  |0 http://scigraph.springernature.com/things/product-market-codes/S11001 
650 2 4 |a Statistics and Computing/Statistics Programs.  |0 http://scigraph.springernature.com/things/product-market-codes/S12008 
700 1 |a Smyth, Gordon K.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441901170 
776 0 8 |i Printed edition:  |z 9781441901194 
830 0 |a Springer Texts in Statistics,  |x 1431-875X 
856 4 0 |u https://doi.org/10.1007/978-1-4419-0118-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)