Multidimensional Data Visualization Methods and Applications /

The goal of this book is to present a variety of methods used  in multidimensional data visualization. The emphasis is placed on new research results and trends in this field, including optimization, artificial neural networks, combinations of algorithms, parallel computing, different proximity meas...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Dzemyda, Gintautas (Συγγραφέας), Kurasova, Olga (Συγγραφέας), Žilinskas, Julius (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2013.
Σειρά:Springer Optimization and Its Applications, 75
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03506nam a22005295i 4500
001 978-1-4419-0236-8
003 DE-He213
005 20141215021755.0
007 cr nn 008mamaa
008 121116s2013 xxu| s |||| 0|eng d
020 |a 9781441902368  |9 978-1-4419-0236-8 
024 7 |a 10.1007/978-1-4419-0236-8  |2 doi 
040 |d GrThAP 
050 4 |a QA402.5-402.6 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519.6  |2 23 
100 1 |a Dzemyda, Gintautas.  |e author. 
245 1 0 |a Multidimensional Data Visualization  |h [electronic resource] :  |b Methods and Applications /  |c by Gintautas Dzemyda, Olga Kurasova, Julius Žilinskas. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 |a XII, 252 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Optimization and Its Applications,  |x 1931-6828 ;  |v 75 
505 0 |a Preface -- 1. Multidimensional Data and the Concept of Visualization -- 2. Strategies for Multidimensional Data Visualization -- 3. Optimization-Based Visualization -- 4. Combining Multidimensional Scaling with Artificial Neural Networks -- 5. Applications of Visualizations -- A. Test Data Sets -- References -- Index. 
520 |a The goal of this book is to present a variety of methods used  in multidimensional data visualization. The emphasis is placed on new research results and trends in this field, including optimization, artificial neural networks, combinations of algorithms, parallel computing, different proximity measures, nonlinear manifold learning,  and more. Many of the applications presented allow us to discover the obvious advantages of visual data mining—it is much easier for a decision maker to detect or extract useful information from graphical representation of data than from raw numbers. The fundamental idea of visualization is to provide data in some visual form that lets humans  understand them, gain insight into the data, draw conclusions, and directly influence the process of decision making. Visual data mining is a field where human participation is integrated in the data analysis process; it covers data visualization and graphical presentation of information. Multidimensional Data Visualization is intended for scientists and researchers in any field of study where complex and multidimensional data must be visually represented. It may also serve as a useful research supplement for PhD students in operations research, computer science, various fields of engineering,  as well as natural and social sciences. 
650 0 |a Mathematics. 
650 0 |a Artificial intelligence. 
650 0 |a Computer simulation. 
650 0 |a Visualization. 
650 0 |a Mathematical optimization. 
650 1 4 |a Mathematics. 
650 2 4 |a Optimization. 
650 2 4 |a Simulation and Modeling. 
650 2 4 |a Visualization. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 |a Kurasova, Olga.  |e author. 
700 1 |a Žilinskas, Julius.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441902351 
830 0 |a Springer Optimization and Its Applications,  |x 1931-6828 ;  |v 75 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4419-0236-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)