Bayesian Item Response Modeling Theory and Applications /

This book presents a thorough treatment and unified coverage of Bayesian item response modeling with applications in a variety of disciplines, including education, medicine, psychology, and sociology. Breakthroughs in computing technology have made the Bayesian approach particularly useful for many...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Fox, Jean-Paul (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2010.
Έκδοση:First.
Σειρά:Statistics for Social and Behavioral Sciences
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04339nam a22005535i 4500
001 978-1-4419-0742-4
003 DE-He213
005 20151204153019.0
007 cr nn 008mamaa
008 100528s2010 xxu| s |||| 0|eng d
020 |a 9781441907424  |9 978-1-4419-0742-4 
024 7 |a 10.1007/978-1-4419-0742-4  |2 doi 
040 |d GrThAP 
050 4 |a H61-61.95 
072 7 |a JHBC  |2 bicssc 
072 7 |a SOC019000  |2 bisacsh 
082 0 4 |a 300.1  |2 23 
100 1 |a Fox, Jean-Paul.  |e author. 
245 1 0 |a Bayesian Item Response Modeling  |h [electronic resource] :  |b Theory and Applications /  |c by Jean-Paul Fox. 
250 |a First. 
264 1 |a New York, NY :  |b Springer New York,  |c 2010. 
300 |a XIV, 313 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Statistics for Social and Behavioral Sciences 
505 0 |a to Bayesian Response Modeling -- Bayesian Hierarchical Response Modeling -- Basic Elements of Bayesian Statistics -- Estimation of Bayesian Item Response Models -- Assessment of Bayesian Item Response Models -- Multilevel Item Response Theory Models -- Random Item Effects Models -- Response Time Item Response Models -- Randomized Item Response Models. 
520 |a This book presents a thorough treatment and unified coverage of Bayesian item response modeling with applications in a variety of disciplines, including education, medicine, psychology, and sociology. Breakthroughs in computing technology have made the Bayesian approach particularly useful for many response modeling problems. Free from computational constraints, realistic and state-of-the-art latent variable response models are considered for complex assessment and survey data to solve real-world problems. The Bayesian framework described provides a unified approach for modeling and inference, dealing with (nondata) prior information and information across multiple data sources. The book discusses methods for analyzing item response data and the complex relationships commonly associated with human response behavior and features • Self-contained introduction to Bayesian item response modeling and a coverage of extending standard models to handle complex assessment data • A thorough overview of Bayesian estimation and testing methods for item response models, where MCMC methods are emphasized • Numerous examples that cover a wide range of application areas, including education, medicine, psychology, and sociology • Datasets and software (S+, R, and WinBUGS code) of the models and methods presented in the book are available on www.jean-paulfox.com Bayesian Item Response Modeling is an excellent book for research professionals, including applied statisticians, psychometricians, and social scientists who analyze item response data from a Bayesian perspective. It is a guide to the growing area of Bayesian response modeling for researchers and graduate students, and will also serve them as a good reference. Jean-Paul Fox is Associate Professor of Measurement and Data Analysis, University of Twente, The Netherlands. His main research activities are in several areas of Bayesian response modeling. Dr. Fox has published numerous articles in the areas of Bayesian item response analysis, statistical methods for analyzing multivariate categorical response data, and nonlinear mixed effects models. 
650 0 |a Social sciences. 
650 0 |a Marketing. 
650 0 |a Probabilities. 
650 0 |a Assessment. 
650 0 |a Statistics. 
650 0 |a Psychometrics. 
650 1 4 |a Social Sciences. 
650 2 4 |a Methodology of the Social Sciences. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Statistics for Social Science, Behavorial Science, Education, Public Policy, and Law. 
650 2 4 |a Psychometrics. 
650 2 4 |a Assessment, Testing and Evaluation. 
650 2 4 |a Marketing. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441907417 
830 0 |a Statistics for Social and Behavioral Sciences 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4419-0742-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)