Statistical Analysis of Management Data

Statistical Analysis of Management Data provides a comprehensive approach to multivariate statistical analyses that are important for researchers in all fields of management, including finance, production, accounting, marketing, strategy, technology, and human resources. This book is especially desi...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Gatignon, Hubert (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2010.
Έκδοση:2.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03339nam a22004695i 4500
001 978-1-4419-1270-1
003 DE-He213
005 20151204145612.0
007 cr nn 008mamaa
008 100301s2010 xxu| s |||| 0|eng d
020 |a 9781441912701  |9 978-1-4419-1270-1 
024 7 |a 10.1007/978-1-4419-1270-1  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a K  |2 bicssc 
072 7 |a BUS061000  |2 bisacsh 
082 0 4 |a 330.015195  |2 23 
100 1 |a Gatignon, Hubert.  |e author. 
245 1 0 |a Statistical Analysis of Management Data  |h [electronic resource] /  |c by Hubert Gatignon. 
250 |a 2. 
264 1 |a New York, NY :  |b Springer New York,  |c 2010. 
300 |a XVII, 388 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Multivariate Normal Distribution -- Reliability Alpha, Principle Component Analysis, and Exploratory Factor Analysis -- Confirmatory Factor Analysis -- Multiple Regression with a Single Dependent Variable -- System of Equations -- Canonical Correlation Analysis -- Categorical Dependent Variables -- Rank-Ordered Data -- Error in Variables – Analysis of Covariance Structure -- Cluster Analysis -- Analysis of Similarity and Preference Data -- Appendices. 
520 |a Statistical Analysis of Management Data provides a comprehensive approach to multivariate statistical analyses that are important for researchers in all fields of management, including finance, production, accounting, marketing, strategy, technology, and human resources. This book is especially designed to provide doctoral students with a theoretical knowledge of the concepts underlying the most important multivariate techniques and an overview of actual applications. It offers a clear, succinct exposition of each technique with emphasis on when each technique is appropriate and how to use it. This second edition, fully revised, updated, and expanded, reflects the most current evolution in the methods for data analysis in management and the social sciences. In particular, it places a greater emphasis on measurement models, and includes new chapters and sections on: confirmatory factor analysis canonical correlation analysis cluster analysis analysis of covariance structure multi-group confirmatory factor analysis and analysis of covariance structures Featuring numerous examples, the book may serve as an advanced text or as a resource for applied researchers in industry who want to understand the foundations of the methods and to learn how they can be applied using widely available statistical software. 
650 0 |a Statistics. 
650 0 |a Econometrics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistics for Business/Economics/Mathematical Finance/Insurance. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Statistics for Social Science, Behavorial Science, Education, Public Policy, and Law. 
650 2 4 |a Econometrics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441912695 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4419-1270-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)