Data Mining Special Issue in Annals of Information Systems /

Over the course of the last twenty years, research in data mining has seen a substantial increase in interest, attracting original contributions from various disciplines including computer science, statistics, operations research, and information systems. Data mining supports a wide range of applica...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Stahlbock, Robert (Επιμελητής έκδοσης), Crone, Sven F. (Επιμελητής έκδοσης), Lessmann, Stefan (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2010.
Έκδοση:1.
Σειρά:Annals of Information Systems, 8
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04706nam a22006255i 4500
001 978-1-4419-1280-0
003 DE-He213
005 20151204171151.0
007 cr nn 008mamaa
008 100301s2010 xxu| s |||| 0|eng d
020 |a 9781441912800  |9 978-1-4419-1280-0 
024 7 |a 10.1007/978-1-4419-1280-0  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
082 0 4 |a 006.312  |2 23 
245 1 0 |a Data Mining  |h [electronic resource] :  |b Special Issue in Annals of Information Systems /  |c edited by Robert Stahlbock, Sven F. Crone, Stefan Lessmann. 
250 |a 1. 
264 1 |a Boston, MA :  |b Springer US,  |c 2010. 
300 |a XIII, 387 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Annals of Information Systems,  |x 1934-3221 ;  |v 8 
505 0 |a Data Mining and Information Systems: Quo Vadis? -- Confirmatory data analysis -- Response-Based Segmentation Using Finite Mixture Partial Least Squares -- Knowledge discovery from supervised learning -- Building Acceptable Classification Models -- Mining Interesting Rules Without Support Requirement: A General Universal Existential Upward Closure Property -- Classification Techniques and Error Control in Logic Mining -- Classification analysis -- An Extended Study of the Discriminant Random Forest -- Prediction with the SVM Using Test Point Margins -- Effects of Oversampling Versus Cost-Sensitive Learning for Bayesian and SVM Classifiers -- The Impact of Small Disjuncts on Classifier Learning -- Hybrid data mining procedures -- Predicting Customer Loyalty Labels in a Large Retail Database: A Case Study in Chile -- PCA-based Time Series Similarity Search -- Evolutionary Optimization of Least-Squares Support Vector Machines -- Genetically Evolved kNN Ensembles -- Web-mining -- Behaviorally Founded Recommendation Algorithm for Browsing Assistance Systems -- Using Web Text Mining to Predict Future Events: A Test of the Wisdom of Crowds Hypothesis -- Privacy-preserving data mining -- Avoiding Attribute Disclosure with the (Extended) p-Sensitive k-Anonymity Model -- Privacy-Preserving Random Kernel Classification of Checkerboard Partitioned Data. 
520 |a Over the course of the last twenty years, research in data mining has seen a substantial increase in interest, attracting original contributions from various disciplines including computer science, statistics, operations research, and information systems. Data mining supports a wide range of applications, from medical decision making, bioinformatics, web-usage mining, and text and image recognition to prominent business applications in corporate planning, direct marketing, and credit scoring. Research in information systems equally reflects this inter- and multidisciplinary approach, thereby advocating a series of papers at the intersection of data mining and information systems research. This special issue of Annals of Information Systems contains original papers and substantial extensions of selected papers from the 2007 and 2008 International Conference on Data Mining (DMIN’07 and DMIN’08, Las Vegas, NV) that have been rigorously peer-reviewed. The issue brings together topics on both information systems and data mining, and aims to give the reader a current snapshot of the contemporary research and state of the art practice in data mining. 
650 0 |a Computer science. 
650 0 |a Business. 
650 0 |a Management science. 
650 0 |a Operations research. 
650 0 |a Decision making. 
650 0 |a Data mining. 
650 0 |a Statistics. 
650 0 |a Engineering economics. 
650 0 |a Engineering economy. 
650 1 4 |a Computer Science. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Operation Research/Decision Theory. 
650 2 4 |a Business and Management, general. 
650 2 4 |a Information Systems Applications (incl. Internet). 
650 2 4 |a Engineering Economics, Organization, Logistics, Marketing. 
650 2 4 |a Statistics for Business/Economics/Mathematical Finance/Insurance. 
700 1 |a Stahlbock, Robert.  |e editor. 
700 1 |a Crone, Sven F.  |e editor. 
700 1 |a Lessmann, Stefan.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441912794 
830 0 |a Annals of Information Systems,  |x 1934-3221 ;  |v 8 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4419-1280-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)