Information Theoretic Learning Renyi's Entropy and Kernel Perspectives /
This book presents the first cohesive treatment of Information Theoretic Learning (ITL) algorithms to adapt linear or nonlinear learning machines both in supervised or unsupervised paradigms. ITL is a framework where the conventional concepts of second order statistics (covariance, L2 distances, cor...
Κύριος συγγραφέας: | Principe, Jose C. (Συγγραφέας) |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | SpringerLink (Online service) |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
New York, NY :
Springer New York : Imprint: Springer,
2010.
|
Σειρά: | Information Science and Statistics,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Παρόμοια τεκμήρια
-
Information Theoretic Learning Renyi's Entropy and Kernel Perspectives
ανά: Principe, Jose C
Έκδοση: (2010) -
Reconstruction and Analysis of 3D Scenes From Irregularly Distributed 3D Points to Object Classes /
ανά: Weinmann, Martin
Έκδοση: (2016) -
The Application of Neural Networks in the Earth System Sciences Neural Networks Emulations for Complex Multidimensional Mappings /
ανά: Krasnopolsky, Vladimir M.
Έκδοση: (2013) -
Spatial Data Mining Theory and Application /
ανά: Li, Deren, κ.ά.
Έκδοση: (2015) -
Precision Landmark Location for Machine Vision and Photogrammetry Finding and Achieving the Maximum Possible Accuracy /
ανά: Armstrong, Brian S.R, κ.ά.
Έκδοση: (2008)