Decision Systems and Nonstochastic Randomness

“Decision Systems and Nonstochastic Randomness” presents the first mathematical formalization of the statistical regularities of non-stochastic randomness and demonstrates how these regularities extend the standard probability-based model of decision making under uncertainty, allowing for the descri...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Ivanenko, V. I. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2010.
Έκδοση:1.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03347nam a22005895i 4500
001 978-1-4419-5548-7
003 DE-He213
005 20151204162314.0
007 cr nn 008mamaa
008 100528s2010 xxu| s |||| 0|eng d
020 |a 9781441955487  |9 978-1-4419-5548-7 
024 7 |a 10.1007/978-1-4419-5548-7  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Ivanenko, V. I.  |e author. 
245 1 0 |a Decision Systems and Nonstochastic Randomness  |h [electronic resource] /  |c by V. I. Ivanenko. 
250 |a 1. 
264 1 |a New York, NY :  |b Springer New York,  |c 2010. 
300 |a XII, 272 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Decision Systems -- Indifferent Uncertainty -- Nonstochastic Randomness -- General Decision Problems -- Experiment in Decision Problems -- Informativity of Experiment in Bayesian Decision Problems -- Reducibility of Experiments in Multistep Decision Problems -- Concluding Remarks. 
520 |a “Decision Systems and Nonstochastic Randomness” presents the first mathematical formalization of the statistical regularities of non-stochastic randomness and demonstrates how these regularities extend the standard probability-based model of decision making under uncertainty, allowing for the description of uncertain mass events that do not fit standard stochastic models. Each self-contained chapter of this neatly-structured monograph includes a detailed introduction and summary of its contents. The included results are presented not only with rigorous proofs but also through numerous intuitive examples. An appendix is provided which includes classic results from the theory of functions and measured sets as well as decision theory, offering an overview of the necessary prerequisites. The formalism of statistical regularities developed in this book will have a significant influence on decision theory and information theory as well as numerous other disciplines. Because of these far-reaching implications, this book may be a useful resource for statisticians, mathematicians, engineers, economists and other utilizing nonstochastic modeling and decision theory. 
650 0 |a Mathematics. 
650 0 |a Operations research. 
650 0 |a Decision making. 
650 0 |a Business mathematics. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Game theory. 
650 0 |a Probabilities. 
650 0 |a Statistics. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Business Mathematics. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Game Theory, Economics, Social and Behav. Sciences. 
650 2 4 |a Operation Research/Decision Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441955470 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4419-5548-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)