Harmonic Analysis of Operators on Hilbert Space

The existence of unitary dilations makes it possible to study arbitrary contractions on a Hilbert space using the tools of harmonic analysis. The first edition of this book was an account of the progress done in this direction in 1950-70. Since then, this work has influenced many other areas of math...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Sz.-Nagy, Béla (Συγγραφέας), Foias, Ciprian (Συγγραφέας), Bercovici, Hari (Συγγραφέας), Kérchy, László (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2010.
Έκδοση:2.
Σειρά:Universitext
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03151nam a22005535i 4500
001 978-1-4419-6094-8
003 DE-He213
005 20151204183048.0
007 cr nn 008mamaa
008 100907s2010 xxu| s |||| 0|eng d
020 |a 9781441960948  |9 978-1-4419-6094-8 
024 7 |a 10.1007/978-1-4419-6094-8  |2 doi 
040 |d GrThAP 
050 4 |a QA331-355 
072 7 |a PBKD  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.9  |2 23 
100 1 |a Sz.-Nagy, Béla.  |e author. 
245 1 0 |a Harmonic Analysis of Operators on Hilbert Space  |h [electronic resource] /  |c by Béla Sz.-Nagy, Ciprian Foias, Hari Bercovici, László Kérchy. 
250 |a 2. 
264 1 |a New York, NY :  |b Springer New York,  |c 2010. 
300 |a XIV, 478 p. 1 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext 
505 0 |a Contractions and Their Dilations -- Geometrical and Spectral Properties of Dilations -- Functional Calculus -- Extended Functional Calculus -- Operator-Valued Analytic Functions -- Functional Models -- Regular Factorizations and Invariant Subspaces -- Weak Contractions -- The Structure of C1.-Contractions -- The Structure of Operators of Class C0. 
520 |a The existence of unitary dilations makes it possible to study arbitrary contractions on a Hilbert space using the tools of harmonic analysis. The first edition of this book was an account of the progress done in this direction in 1950-70. Since then, this work has influenced many other areas of mathematics, most notably interpolation theory and control theory. This second edition, in addition to revising and amending the original text, focuses on further developments of the theory. Specifically, the last two chapters of the book continue and complete the study of two operator classes: operators whose powers do not converge strongly to zero, and operators whose functional calculus (as introduced in Chapter III) is not injective. For both of these classes, a wealth of material on structure, classification and invariant subspaces is included in Chapters IX and X. Several chapters conclude with a sketch of other developments related with (and developing) the material of the first edition. 
650 0 |a Mathematics. 
650 0 |a Harmonic analysis. 
650 0 |a Functional analysis. 
650 0 |a Functions of complex variables. 
650 0 |a Operator theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Abstract Harmonic Analysis. 
650 2 4 |a Operator Theory. 
700 1 |a Foias, Ciprian.  |e author. 
700 1 |a Bercovici, Hari.  |e author. 
700 1 |a Kérchy, László.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441960931 
830 0 |a Universitext 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4419-6094-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)