Complementarity Modeling in Energy Markets

This addition to the ISOR series  introduces complementarity models in a straightforward and approachable manner and uses them to carry out an in-depth analysis of energy markets, including formulation issues and solution techniques.   In a nutshell, complementarity models generalize: a. optimizatio...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Gabriel, Steven A. (Συγγραφέας), Conejo, Antonio J. (Συγγραφέας), Fuller, J. David (Συγγραφέας), Hobbs, Benjamin F. (Συγγραφέας), Ruiz, Carlos (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2013.
Σειρά:International Series in Operations Research & Management Science, 180
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04343nam a22005535i 4500
001 978-1-4419-6123-5
003 DE-He213
005 20151204180050.0
007 cr nn 008mamaa
008 120719s2013 xxu| s |||| 0|eng d
020 |a 9781441961235  |9 978-1-4419-6123-5 
024 7 |a 10.1007/978-1-4419-6123-5  |2 doi 
040 |d GrThAP 
050 4 |a HD30.23 
072 7 |a KJT  |2 bicssc 
072 7 |a KJMD  |2 bicssc 
072 7 |a BUS049000  |2 bisacsh 
082 0 4 |a 658.40301  |2 23 
100 1 |a Gabriel, Steven A.  |e author. 
245 1 0 |a Complementarity Modeling in Energy Markets  |h [electronic resource] /  |c by Steven A. Gabriel, Antonio J. Conejo, J. David Fuller, Benjamin F. Hobbs, Carlos Ruiz. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 |a XXVI, 630 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a International Series in Operations Research & Management Science,  |x 0884-8289 ;  |v 180 
505 0 |a Introduction and Motivation -- Optimality and Complementarity -- Some Microeconomic Principles -- Equilibria and Complementarity Problems -- Variational Inequality Problems -- Optimization Problems Constrained by Optimization Problems -- Equilibrium Problems with Equilibrium Constraints -- Algorithm for LCPs, NCPs, and VIs -- Some Advanced Algorithms for VI Decomposition, MPCCs and EPECs -- Natural Gas Market Modeling -- Electricity and Environmental Markets -- Multicommodity Equilibrium Models: Accounting for Demand-Side Linkages. 
520 |a This addition to the ISOR series  introduces complementarity models in a straightforward and approachable manner and uses them to carry out an in-depth analysis of energy markets, including formulation issues and solution techniques.   In a nutshell, complementarity models generalize: a. optimization problems via their Karush-Kuhn-Tucker conditions b. non-cooperative games in which each player may be solving a separate but related optimization problem with potentially overall system constraints (e.g., market-clearing conditions) c. economic and engineering problems that aren’t specifically derived from optimization problems (e.g., spatial price equilibria) d. problems in which both primal and dual variables (prices) appear in the original formulation (e.g., The National Energy Modeling System (NEMS) or its precursor, PIES). As such, complementarity models are a very general and flexible modeling format. A natural question is why concentrate on energy markets for this complementarity approach?  As it turns out, energy or other markets that have game theoretic aspects are best modeled by complementarity problems.  The reason is that the traditional perfect competition approach no longer applies due to deregulation and restructuring of these markets and thus the corresponding optimization problems may no longer hold.  Also, in some instances it is important in the original model formulation to involve both primal variables (e.g., production) as well as dual variables (e.g., market prices) for public and private sector energy planning.  Traditional optimization problems can not directly handle this mixing of primal and dual variables but complementarity models can and this makes them all that more effective for decision-makers. 
650 0 |a Business. 
650 0 |a Operations research. 
650 0 |a Decision making. 
650 0 |a Management science. 
650 0 |a Macroeconomics. 
650 1 4 |a Business and Management. 
650 2 4 |a Operation Research/Decision Theory. 
650 2 4 |a Macroeconomics/Monetary Economics//Financial Economics. 
650 2 4 |a Operations Research, Management Science. 
700 1 |a Conejo, Antonio J.  |e author. 
700 1 |a Fuller, J. David.  |e author. 
700 1 |a Hobbs, Benjamin F.  |e author. 
700 1 |a Ruiz, Carlos.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441961228 
830 0 |a International Series in Operations Research & Management Science,  |x 0884-8289 ;  |v 180 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4419-6123-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SBE 
950 |a Business and Economics (Springer-11643)